METABOLITE PROFILING, CYTOTOXICITY, AND PRO-APOPTOTIC EVALUATION OF CINNAMOMUM MYRIANTHUM MERR. IN HT-29 COLORECTAL CANCER CELLS

Authors

  • RHIAN JAYMAR RAMIL The Graduate School, Centro Escolar University, Manila, Philippines. and Department of Pharmacy, College of Health Sciences, Mariano Marcos State University, Batac City, Ilocos Norte, Philippines. https://orcid.org/0000-0003-0729-7671
  • YUKIE SATO Department of Pharmacognosy, Tohoku Medical and Pharmaceutical University, Sendai, Japan.
  • KYOKO KOBAYASHI Department of Pharmacognosy, Tohoku Medical and Pharmaceutical University, Sendai, Japan.
  • KENROH SASAKI Department of Pharmacognosy, Tohoku Medical and Pharmaceutical University, Sendai, Japan.
  • FRANCISCO M. HERALDE III Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines-Manila, Manila, Philippines.

DOI:

https://doi.org/10.22159/ajpcr.2025v18i12.56710

Keywords:

Apoptosis, Cinnamomum myrianthum, Colorectal cancer, Cytotoxicity, metabolomics

Abstract

Objective: To evaluate the metabolite profile as well as the cytotoxic and pro-apoptotic activities of Cinnamomum myrianthum on HT-29 colorectal cancer (CRC) cells in vitro.

Methods: The cytotoxic effects of C. myrianthum crude extract (CmCE) and its fractions were assessed against HT-29 CRC cells using the WST-8 assay. The half-maximal inhibitory concentration (IC50) and selectivity index (SI) were determined. The most bioactive fraction was further subjected to untargeted metabolite profiling using ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. Apoptosis induction was analyzed through Annexin V-FITC/PI staining through flow cytometry, while caspase-3/7 activation was measured using the Caspase-Glo® 3/7 luminescence assay.

Results: CmCE exhibited moderate cytotoxic activity against HT29 CRC cells with an IC50 value of 32.7 μg/mL (p<0.001). Among the tested fractions (Cm1A-Cm1E), Cm1C demonstrated the most potent cytotoxic effect, with an IC50 of 25.7 μg/mL (p< 0.001) and a SI of 3.63. Flow cytometry analysis revealed that Cm1C significantly induced late-stage apoptosis in HT29 cells. In addition, Cm1C markedly increased caspase-3/7 activity with 2.7- fold (p<0.001) at higher concentration, indicating activation of the apoptotic pathway. Metabolite profiling of Cm1C identified several polyphenolic compounds, including cinnamtannin B1, rutin, hyperin, and kaempferol glycosides.

Conclusion: These findings indicated that Cm1C, a polyphenol-rich fraction of C. myrianthum, exhibited selective cytotoxicity against HT29 CRC cells and induced apoptosis through caspase-3/7 activation. This fraction shows promise as a potential natural candidate for CRC therapy.

Downloads

Download data is not yet available.

References

1. Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024 May;74(3):229-63. doi: 10.3322/caac.21834, PMID 38572751

2. Zhang T, Guo Y, Qiu B, Dai X, Wang Y, Cao X. Global, regional, and national trends in colorectal cancer burden from 1990 to 2021 and projections to 2040. Front Oncol. 2025 Jan 16;14:1466159. doi: 10.3389/fonc.2024.1466159, PMID 39886660

3. Morgan E, Arnold M, Gini A, Lorenzoni V, Cabasag CJ, Laversanne M, et al. Global burden of colorectal cancer in 2020 and 2040: Incidence and mortality estimates from GLOBOCAN. Gut. 2023 Feb;72(2): 338-44. doi: 10.1136/gutjnl-2022-327736, PMID 36604116

4. Cragg GM, Pezzuto JM. Natural products as a vital source for the discovery of cancer chemotherapeutic and chemopreventive agents. Med Princ Pract. 2016;25 Suppl 2:41-59. doi: 10.1159/000443404, PMID 26679767

5. Mitra T. Investing in Biodiversity is Investing in Our Future. Inquirer Opinion; 2016. Available from: https://opinion.inquirer.net/94897/ investing-in-biodiversity-is-investing-in-our-future [Last accessed on 2025 Apr 25].

6. Biodiversity Facts: Status and Trends of Biodiversity, Including Benefits from Biodiversity and Ecosystem Services. Secretariat of the Convention on Biological Diversity. Convention on Biological Diversity. Available from: https://www.cbd.int/countries/profile?country=ph [Last accessed on 2025 Apr 25].

7. Atanasov AG, Waltenberger B, Pferschy-Wenzig EM, Linder T, Wawrosch C, Uhrin P, et al. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol Adv. 2015;33(8):1582-614. doi: 10.1016/j.biotechadv.2015.08.001, PMID 26281720

8. Twilley D, Lall N. The role of natural products from plants in the development of anticancer agents. In: Natural Products and Drug Discovery. Elsevier; 2018. p. 139-78. Available from: https:// linkinghub.elsevier.com/retrieve/pii/B9780081020814000071 [Last accessed on 2025 Apr 13].

9. Ovadje P, Roma A, Steckle M, Nicoletti L, Arnason JT, Pandey S. Advances in the Research and Development of natural health products as main stream cancer therapeutics. Evid Based Complement Alternat Med. 2015;2015:751348. doi: 10.1155/2015/751348, PMID 25883673

10. Dias DA, Urban S, Roessner U. A historical overview of natural products in drug discovery. Metabolites. 2012 Apr 16;2(2):303-36. doi: 10.3390/metabo2020303, PMID 24957513

11. Ribeiro-Santos R, Andrade M, Madella D, Martinazzo AP, de Aquino Garcia Moura L, de Melo NR, et al. Revisiting an ancient spice with medicinal purposes: Cinnamon. Trends Food Sci Technol. 2017 Apr;62:154-69. doi: 10.1016/j.tifs.2017.02.011

12. Pelser P, Barcelona J. Nickrent D. Co’s Digital Flora of the Philippines. Philippine Plants. Available from: https://www.philippineplants.org

13. Carag H, Buot IE Jr. A checklist of the orders and families of medicinal plants in the Philippines. Sylvatrop. Tech J Philipp Ecosyst Nat Resour. 2017 Dec;27(1-2):49-94.

14. Balijepalli MK, Buru AS, Sakirolla R, Pichika MR. Cinnamomum genus: A review on its biological activities. Int J Pharm Pharm Sci. 2017 Feb 1;9:1-11. doi: 10.22159/ijpps.2017v9i2.11156

15. Sadeghi S, Davoodvandi A, Pourhanifeh MH, Sharifi N, ArefNezhad R, Sahebnasagh R, et al. Anti-cancer effects of cinnamon: Insights into its apoptosis effects. Eur J Med Chem. 2019 Sep;178:131-40. doi: 10.1016/j.ejmech.2019.05.067, PMID 31195168

16. Banerjee S, Banerjee S. Anticancer potential and molecular mechanisms of cinnamaldehyde and its congeners present in the cinnamon plant. Physiologia. 2023 Mar 30;3(2):173-207. doi: 10.3390/ physiologia3020013

17. Ahamed T, Ramasamy K, Ramya S. An in silico and in vitro evaluation of cytotoxicity, apoptotic activity and gene expression modulation of sarsasapogenin in human colorectal cancer cell line HT-29. Int J App Pharm. 2024 Jul 7;6:84-91. doi: 10.22159/ijap.2024v16i4.50855

18. Tominaga H, Ishiyama M, Ohseto F, Sasamoto K, Hamamoto T, Suzuki K, et al. A water-soluble tetrazolium salt useful for colorimetric cell viability assay. Anal Commun. 1999;36(2):47-50. doi: 10.1039/ a809656b

19. Aggarwal S, Bhadana K, Singh B, Rawat M, Mohammad T, Al-Keridis LA, et al. Cinnamomum zeylanicum extract and its bioactive component cinnamaldehyde show anti-tumor effects via inhibition of multiple cellular pathways. Front Pharmacol. 2022 Jun 2;13:918479. doi: 10.3389/fphar.2022.918479, PMID 35774603

20. Tsuchiya K, Yoshimura K, Iwashita Y, Inoue Y, Ohta T, Watanabe H, et al. m6A demethylase ALKBH5 promotes tumor cell proliferation by destabilizing IGF2BPs target genes and worsens the prognosis of patients with non-small-cell lung cancer. Cancer Gene Ther. 2022 Oct;29(10):1355-72. doi: 10.1038/s41417-022-00451-8, PMID 35318440

21. Sagar P, Raveendran R. Cleistanthin B shows a potent cytotoxic activity against colorectal cancer cells. Asian J Pharm Clin Res. 2022 Mar 7;15:94-8. doi: 10.22159/ajpcr.2022.v15i3.43953

22. Ang AM, Tabugo SR, Uy MM. Antiproliferative, proapoptotic, and antimigration activities of marine sponges against human colon cancer cell line (HCT116). J Appl Pharm Sci. 2023;13(7):186-92. doi: 10.7324/

JAPS.2023.113246

23. Bayro AM, Corpuz MJ, Vasquez RD. In vitro cytotoxic and apoptotic activities of sulfated polysaccharide from Codium edule P.C. silva against breast cancer adenocarcinoma. Int J Appl Pharm. 2019 Sep 19;11:17-21.

24. Canga I, Vita P, Oliveira AI, Castro MÁ, Pinho C. In vitro cytotoxic activity of African plants: A review. Molecules. 2022 Aug 5;27(15):4989. doi: 10.3390/molecules27154989, PMID 35956938

25. Nile A, Shin J, Shin J, Park GS, Lee S, Lee JH, et al. Cinnamaldehyde-rich cinnamon extract induces cell death in colon cancer cell lines HCT 116 and HT-29. Int J Mol Sci. 2023 May 3;24(9):8191. doi: 10.3390/ ijms24098191, PMID 37175897

26. Park GH, Song HM, Park SB, Son HJ, Um Y, Kim HS, et al. Cytotoxic activity of the twigs of Cinnamomum cassia through the suppression of cell proliferation and the induction of apoptosis in human colorectal cancer cells. BMC Complement Alternat Med. 2018 Dec;18(1):28. doi: 10.1186/s12906-018-2096-x, PMID 29554905

27. Palmioli A, Forcella M, Oldani M, Angotti I, Sacco G, Fusi P, et al. Adjuvant effect of cinnamon polyphenolic components in colorectal cancer cell lines. Int J Mol Sci. 2023 Nov 9;24(22):16117. doi: 10.3390/ ijms242216117, PMID 38003308

28. Nguyen HA, Kim SA. 2′-hydroxycinnamaldehyde induces apoptosis through HSF1-mediated BAG3 expression. Int J Oncol. 2017 Jan;50(1):283-9. doi: 10.3892/ijo.2016.3790, PMID 27922674

29. Li J, Teng Y, Liu S, Wang Z, Chen Y, Zhang Y, et al. Cinnamaldehyde affects the biological behavior of human colorectal cancer cells and induces apoptosis via inhibition of the PI3K/Akt signaling pathway. Oncol Rep. 2016 Mar;35(3):1501-10. doi: 10.3892/or.2015.4493, PMID 26677144

30. Karnopp JC, Jorge J, Da Silva JR, Boldo D, Del Pino Santos KF, Duarte AP, et al. Synthesis, characterization, and cytotoxicity evaluation of chlorambucil-functionalized mesoporous silica nanoparticles. Pharmaceutics. 2024 Aug 19;16(8):1086. doi: 10.3390/ pharmaceutics16081086, PMID 39204431

31. De Oliveira PF, Damasceno JL, Bertanha CS, Araújo AR, Pauletti PM, Tavares DC. Study of the cytotoxic activity of Styrax camporum extract and its chemical markers, egonol and homoegonol. Cytotechnology. 2016 Aug;68(4):1597-602. doi: 10.1007/s10616-015-9864-y, PMID 25795470

32. Wondrak GT, Villeneuve NF, Lamore SD, Bause AS, Jiang T, Zhang DD. The cinnamon-derived dietary factor cinnamic aldehyde activates the Nrf2-dependent antioxidant response in human epithelial colon cells. Molecules. 2010 May 7;15(5):3338-55. doi: 10.3390/ molecules15053338, PMID 20657484

33. Gao L, Gou N, Yuan E, Ren J. Bioactivity-oriented purification of polyphenols from Cinnamomum cassia Presl. with anti-proliferation effects on colorectal cancer cells. Plant Foods Hum Nutr. 2020;75(4):561-8. doi: 10.1007/s11130-020-00846-8, PMID 32816145

34. Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, et al. Proposed minimum reporting standards for chemical analysis: Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics. 2007 Sep 19;3(3):211-21. doi: 10.1007/ s11306-007-0082-2, PMID 24039616

35. Bilbao A, Zhang Y, Varesio E, Luban J, Strambio-De-Castillia C, Lisacek F, et al. Ranking fragment ions based on outlier detection for improved label-free quantification in data-independent acquisition LC– MS/MS. J Proteome Res. 2015 Nov 6;14(11):4581-93. doi: 10.1021/ acs.jproteome.5b00394, PMID 26412574

36. Osman E, Mohammad Zahariluddin AS, Sharip S, Idris Z, Tan JK. Metabolomic profiling reveals common metabolic alterations in plasma of patients with toxoplasma infection and schizophrenia. Genes. 2022 Aug 19;13(8):1482. doi: 10.3390/genes13081482, PMID 36011393

37. Carriere PP, Kapur N, Mir H, Ward AB, Singh S. Cinnamtannin B-1 inhibits cell survival molecules and induces apoptosis in colon cancer. Int J Oncol. 2018 Jul 19;53(4):1442-54. doi: 10.3892/ijo.2018.4489, PMID 30066888

38. Guon TE, Chung HS. Hyperoside and rutin of Nelumbo nucifera induce mitochondrial apoptosis through a caspase-dependent mechanism in HT-29 human colon cancer cells. Oncol Lett. 2016 Apr;11(4):2463-70. doi: 10.3892/ol.2016.4247, PMID 27073499

39. Zhang Y, Dong H, Zhang J, Zhang L. Inhibitory effect of hyperoside isolated from Zanthoxylum bungeanum leaves on SW620 human colorectal cancer cells via induction of the p53 signaling pathway and apoptosis. Mol Med Rep. 2017 Feb;16(2):1125-32. doi: 10.3892/ mmr.2017.6710, PMID 29067453

40. Xia L, Xu X, Li M, Zhang X, Cao F. Afzelin induces immunogenic cell death against lung cancer by targeting NQO2. BMC Complement Med Ther. 2023 Oct 27;23(1):381. doi: 10.1186/s12906-023-04221-3, PMID 37891619

41. Kwon HK, Hwang JS, So JS, Lee CG, Sahoo A, Ryu JH, et al. Cinnamon extract induces tumor cell death through inhibition of NFkappaB and AP1. BMC Cancer. 2010;10:392.

42. Tsai KD, Liu YH, Chen TW, Yang SM, Wong HY, Cherng J, et al. Cuminaldehyde from Cinnamomum verum induces cell death through targeting topoisomerase in cuminaldehyde from Cinnamomum verum induces cell death through targeting topoisomerase 1 and 2 in Human colorectal adenocarcinoma COLO 205 cells. Nutrients. 2016 May 24;8(6):318. doi: 10.3390/nu8060318, PMID 27231935

Published

07-12-2025

How to Cite

RHIAN JAYMAR RAMIL, et al. “METABOLITE PROFILING, CYTOTOXICITY, AND PRO-APOPTOTIC EVALUATION OF CINNAMOMUM MYRIANTHUM MERR. IN HT-29 COLORECTAL CANCER CELLS”. Asian Journal of Pharmaceutical and Clinical Research, vol. 18, no. 12, Dec. 2025, pp. 80-88, doi:10.22159/ajpcr.2025v18i12.56710.

Issue

Section

Original Article(s)