NETWORK PHARMACOLOGY AND MOLECULAR DOCKING-BASED INVESTIGATION OF CALOTROPIS GIGANTEA LINN. LEAF EXTRACT AGAINST VULVOVAGINAL CANDIDIASIS
DOI:
https://doi.org/10.22159/ajpcr.2025v18i12.56803Keywords:
Network Pharmacology, vulvovaginal candidiasis, Calotropis gigantea Linn, molecular docking, 3,6-Octadienal, 3,7-dimethyl-.Abstract
Objectives: This study aimed to elucidate the multitarget therapeutic mechanisms of Calotropis gigantea leaf extract against vulvovaginal candidiasis (VVC) using a network pharmacology (NP) approach integrated with molecular docking.
Methods: Gas chromatography-mass spectrometry (GC-MS) analysis of the methanolic extract of C. gigantea leaves identified 38 phytochemicals. Drug-likeness was assessed through SwissADME, and target prediction was performed using Super-PRED and UniProt. VVC-related genes from GeneCards were compared using Venny, and common targets were analyzed through STRING for protein–protein interaction. Pathway enrichment and network construction were done through Kyoto Encyclopedia of Genes and Genomes (KEGG) and Cytoscape. Key compounds were docked with hub protein toll-like receptor 4 (TLR4) using Molsoft ICM.
Results: GC-MS identified key bioactives like 3,6-Octadienal, 3,7-dimethyl- and 1,3,8-p-Menthatriene. Ten overlapping targets with VVC genes were found, with TLR4 as a major hub. KEGG analysis highlighted four pathways, including Toll-like receptor signaling. Docking revealed strong binding of 3,6-Octadienal, 3,7-dimethyl- to TLR4 (−24.9 kcal/mol), exceeding clotrimazole (-18.82 kcal/mol).
Conclusion: C. gigantea Linn. shows promise as a multi-target antifungal agent against VVC by modulating immune pathways. NP and docking highlight 3,6-Octadienal, 3,7-dimethyl, as a key bioactive. Among the identified compounds, 3,6-Octadienal, 3,7-dimethyl- exhibited the strongest binding affinity toward TLR4; however, its low concentration (0.11% relative peak area) indicates that its biological impact may be limited and potentially synergistic with other more abundant phytoconstituents. Further in vitro and in vivo studies are needed to validate these findings and develop clinical formulations.
Downloads
References
1. Willems HM, Ahmed SS, Liu J, Xu Z, Peters BM. Vulvovaginal candidiasis: A current understanding and burning questions. J Fungi (Basel). 2020;6(1):27. doi: 10.3390/jof6010027, PMID 32106438
2. Martens MG, Maximos B, Degenhardt T, Person K, Curelop S, Ghannoum M, et al. Phase 3 study evaluating the safety and efficacy of oteseconazole in the treatment of recurrent vulvovaginal candidiasis and acute vulvovaginal candidiasis infections. Am J Obstet Gynecol. 2022;227(6):880.e1-880.e11. doi: 10.1016/j.ajog.2022.07.023, PMID 35863457
3. Satora M, Grunwald A, Zaremba B, Frankowska K, Żak K, Tarkowski R, et al. Treatment of vulvovaginal candidiasis-an overview of guidelines and the latest treatment methods. J Clin Med. 2023;12(16):5376. doi: 10.3390/jcm12165376, PMID 37629418
4. Yano J, Sobel JD, Nyirjesy P, Sobel R, Williams VL, Yu Q, et al. Current patient perspectives of vulvovaginal candidiasis: Incidence, symptoms, management and post-treatment outcomes. BMC Womens Health. 2019;19(1):48. doi: 10.1186/s12905-019-0748-8, PMID 30925872
5. Sobel JD. Recurrent vulvovaginal candidiasis. Am J Obstet Gynecol. 2016;214(1):15-21. doi: 10.1016/j.ajog.2015.06.067, PMID 26164695
6. Crouss T, Sobel JD, Smith K, Nyirjesy P. Long-term outcomes of women with recurrent vulvovaginal candidiasis after a course of maintenance antifungal therapy. J Low Genit Tract Dis. 2018;22(4):382-6. doi: 10.1097/LGT.0000000000000413, PMID 29975334
7. Denning DW, Kneale M, Sobel JD, Rautemaa-Richardson R. Global burden of recurrent vulvovaginal candidiasis: A systematic review. Lancet Infect Dis. 2018;18(11):e339-47. doi: 10.1016/S1473- 3099(18)30103-8, PMID 30078662
8. Gaziano R, Sabbatini S, Roselletti E, Perito S, Monari C. Saccharomyces cerevisiae-based probiotics as novel antimicrobial agents to prevent and treat vaginal infections. Front Microbiol. 2020;11:718. doi: 10.3389/ fmicb.2020.00718, PMID 32373104
9. Sustr V, Foessleitner P, Kiss H, Farr A. Vulvovaginal candidosis: Current concepts, challenges and perspectives. J Fungi (Basel). 2020;6(4):267. doi: 10.3390/jof6040267, PMID 33171784
10. Monk BC, Keniya MV. Roles for structural biology in the discovery of drugs and agrochemicals targeting sterol 14α-Demethylases. J Fungi (Basel). 2021;7(2):67. doi: 10.3390/jof7020067, PMID 33498194
11. Usman MR, Usman MA, Patil S. A. Isolation of preliminary phytoconstituents and anti-inflammatory and antipyretic activity of Calotropis gigantea Linn. Leaves extracts. Int J Pharm Sci Res. 2012;3(4):1208-14. doi: 10.13040/IJPSR.0975-8232.3(4).1208-14
12. Alafnan A, Sridharagatta S, Saleem H, Khurshid U, Alamri A, Ansari SY, et al. Evaluation of the phytochemical, antioxidant, enzyme inhibition, and wound healing potential of Calotropis gigantea (L.) Dryand: A source of a bioactive medicinal product. Front Pharmacol. 2021;12:701369. doi: 10.3389/fphar.2021.701369, PMID 34483902
13. Sharma S, Kumari A, Sharma M. Comparative GC-MS analysis of bioactive compounds in methanolic extract of Calotropis gigantea (L.) W.T. Aiton Leaf and latex. Int J Pharmacogn Phytochem Res. 2016;8(11):1823-7.
14. Ali EM, Abdallah BM. Effective inhibition of candidiasis using an eco-friendly leaf extract of Calotropis-gigantean-mediated silver nanoparticles. Nanomaterials (Basel). 2020;10(3):422. doi: 10.3390/ nano10030422, PMID 32121137
15. Batool S, Javed MR, Aslam S, Noor F, Javed HM, Seemab R, et al. Network pharmacology and bioinformatics approach reveals the multi-target pharmacological mechanism of Fumaria indica in the treatment of liver cancer. Pharmaceuticals (Basel). 2022;15(6):654. doi: 10.3390/ ph15060654, PMID 35745580
16. Oh KK, Adnan MD, Cho DH. Network pharmacology approach to bioactive chemical compounds identified from Lespedeza bicolor lignum methanol extract by GC-MS for amelioration of hepatitis. Gene Rep. 2020;21:100851. doi: 10.1016/j.genrep.2020.100851
17. Agu PC, Afiukwa CA, Orji OU, Ezeh EM, Ofoke IH, Ogbu CO, et al. Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management. Sci Rep. 2023;13(1):13398. doi: 10.1038/s41598-023-40160-2, PMID 37592012
18. Sethi A, Joshi K, Sasikala K, Alvala M. Molecular docking in modern drug discovery: Principles and recent applications. In: Gaitonde V, Karmakar P, Trivedi A, editors. Drug Discovery and Development - New Advances. London: IntechOpen; 2020. doi: 10.5772/intechopen.85991
19. Madhavan SA, Vinotha P, Uma V. Phytochemical screening and comparative GC-MS analysis of bioactive compounds present in methanolic leaf and latex extract Calotropis gigantea (L.). Asian J Adv Med Sci. 2020;2(2):1-13.
20. Khandelwal KR. Practical Pharmacognosy Techniques and Experiments. New Delhi: Nirali Prakashan; 2002. p. 15-163.
21. Kokate CK. Practical Pharmacognosy. 1st ed. New Delhi: Vallabh Prakashan; 2005. p. 111.
22. Sun T, Quan W, Peng S, Yang D, Liu J, He C, et al. Network pharmacology-based strategy combined with molecular docking and in vitro validation study to explore the underlying mechanism of Huo Luo Xiao Ling dan in treating atherosclerosis. Drug Des Dev Ther. 2022;16:1621-45. doi: 10.2147/DDDT.S357483, PMID 35669282
23. Zhao J, Pan B, Zhou X, Wu C, Hao F, Zhang J, et al. Polygonum cuspidatum inhibits the growth of osteosarcoma cells via impeding Akt/ ERK/EGFR signaling pathways. Bioengineered. 2022;13(2):2992-3006. doi: 10.1080/21655979.2021.2017679, PMID 35129428
24. Gogoi B, Saikia SP. Virtual screening and network pharmacology-based study to explore the pharmacological mechanism of Clerodendrum species for anticancer treatment. Evid Based Complement Alternat Med. 2022;2022:3106363. doi: 10.1155/2022/3106363, PMID 36387366
25. Xu H, Wu J, Wang S, Xu L, Liu P, Shi Y, et al. Network pharmacology and in vivo experiments reveal the pharmacological effects and molecular mechanisms of Simiao Powder in prevention and treatment for gout. BMC Complement Med Ther. 2022;22(1):152. doi: 10.1186/ s12906-022-03622-0, PMID 35672755
26. Vinothkanna A, Prathiviraj R, Sivakumar TR, Ma Y, Sekar S. GC-MS and network pharmacology analysis of the ayurvedic fermented medicine, Chandanasava, against chronic kidney and cardiovascular diseases. Appl Biochem Biotechnol. 2023;195(5):2803-28. doi: 10.1007/s12010-022-04242-7, PMID 36418713
27. Hu M, Yan H, Li H, Feng Y, Sun W, Ren Y, et al. Use of network pharmacology and molecular docking to explore the mechanism of action of curcuma in the treatment of osteosarcoma. Sci Rep. 2023;13(1):9569. doi: 10.1038/s41598-023-36687-z, PMID 37311820
28. Jin J, Chen B, Zhan X, Zhou Z, Liu H, Dong Y. Network pharmacology and molecular docking study on the mechanism of colorectal cancer treatment using Xiao-Chai-Hu-Tang. PLOS One. 2021;16(6):e0252508. doi: 10.1371/journal.pone.0252508, PMID 34125845
29. Shahzadi Z, Yousaf Z, Anjum I, Bilal M, Yasin H, Aftab A,
et al. Network pharmacology and molecular docking: Combined computational approaches to explore the antihypertensive potential of Fabaceae species. Bioresour Bioprocess. 2024;11(1):53. doi: 10.1186/ s40643-024-00764-6, PMID 38767701
30. Jain NK, Tailang M, Chandrasekaran B, Khazaleh N, Thangavel N, Makeen HA, et al. Integrating network pharmacology with molecular docking to rationalize the ethnomedicinal use of Alchornea laxiflora (Benth.) Pax & K. Hoffm. for efficient treatment of depression. Front Pharmacol. 2024;15:1290398. doi: 10.3389/fphar.2024.1290398, PMID 38505421
31. Ma G, Dong Q, Li F, Jin Z, Pi J, Wu W, et al. Network pharmacology and in vivo evidence of the pharmacological mechanism of geniposide in the treatment of atherosclerosis. BMC Complement Med Ther. 2024;24(1):53. doi: 10.1186/s12906-024-04356-x, PMID 38267978
32. Oh KK, Adnan MD, Cho DH. Network pharmacology study on Morus alba L. Leaves: Pivotal functions of bioactives on RAS signaling pathway and its associated target proteins against gout. Int J Mol Sci. 2021;22(17):9372. doi: 10.3390/ijms22179372, PMID 34502281
33. Singh S, Singh S, Mishra RM, Shrivastava MP. Preliminary phytochemical screening of Calotropis gigantea Leaf. Int J Sci Res Publ. 2014;4(2):2250-3153.
34. Roeder A, Kirschning CJ, Rupec RA, Schaller M, Korting HC. Toll-like receptors and innate antifungal responses. Trends Microbiol. 2004;12(1):44-9. doi: 10.1016/j.tim.2003.11.003, PMID 14700551
35. Demirezen S, Yucel A, Beksac MS. Candida and toll-like receptors. Gynecol Obstet Reprod Med. 2012;18:176-8.
36. Falsetta ML, Foster DC, Woeller CF, Pollock SJ, Bonham AD, Piekna-Przybylska DP, et al. Toll-like receptor signaling contributes to proinflammatory mediator production in localized provoked vulvodynia. J Low Genit Tract Dis. 2018;22(1):52-7. doi: 10.1097/ LGT.0000000000000364, PMID 29271858
37. Kumwenda P, Cottier F, Hendry AC, Kneafsey D, Keevan B, Gallagher H, et al. Estrogen promotes innate immune evasion of Candida albicans through inactivation of the alternative compliment system. Cell Rep. 2022;38(1):110183. doi: 10.1016/j.celrep.2021.110183, PMID 34986357
38. Ona S, James K, Ananthakrishnan AN, Long MD, Martin C, Chen W, et al. Association between vulvovaginal discomfort and activity of inflammatory bowel diseases. Clin Gastroenterol Hepatol. 2020;18(3):604-11.e1. doi: 10.1016/j.cgh.2019.05.018, PMID 31108226
39. Ho J, Camilli G, Griffiths JS, Richardson JP, Kichik N, Naglik JR. Candida albicans and candidalysin in inflammatory disorders and cancer. Immunology. 2020;162(1):11-6. doi: 10.1111/imm.13255, PMID 32880925
40. Sherin Rebecca F, Pon Nivedha R, Sharmila R. Molecular docking analysis of bioactive compounds from Mollugo cerviana (L.) ser with DHFR for antifungal activity. Bioinformation. 2021;17(11):944-8. doi: 10.6026/97320630017944, PMID 35655907
41. Ashrafi S, Amini AA, Karimi P, Bagherian M, Adibzadeh Sereshgi MM, Asgarhalvaei F, et al. Candidiasis in breast cancer: Tumor progression or not? Iran J Basic Med Sci. 2024;27(11):1346-56. doi: 10.22038/ ijbms.2024.75408.16379, PMID 39386227
42. Prasanchit P, Pongchaikul P, Lertsittichai P, Tantitham C, Manonai J. Vaginal microbiomes of breast cancer survivors treated with aromatase inhibitors with and without vulvovaginal symptoms. Sci Rep. 2024;14(1):7417. doi: 10.1038/s41598-024-58118-3, PMID 38548910
43. Tipugade O, Sawale JA, Jadhav N. Network pharmacology and molecular docking-based exploration of rubiaceous plants for breast cancer: Phytochemicals, preclinical studies, and regulatory perspectives. Asian J Pharm Clin Res. 2025;18(7):52-71. doi: 10.22159/ ajpcr.2025v18i7.54934
44. Jain NK, Agrawal A, Kulkarni GT, Tailang M. Molecular docking study on phytoconstituents of traditional ayurvedic drug Tulsi (Ocimum sanctum Linn.) against Covid-19 MPRO enzyme: An in-silico study. Int J Pharm Pharm Sci. 2022 Apr 1;14:44-50. doi: 10.22159/ ijpps.2022v14i4.43181
45. Sudha D, Malarkodi R, Gokulakrishnan A, Liyakath Ali AR. LC-MS/MS and GC-MS profiling and the antioxidant activity of Carissa carandas linn. Fruit extracts. Int J Pharm Pharm Sci. 2024;16(6):39-45. doi: 10.22159/ijpps.2024v16i6.50818
Published
How to Cite
Issue
Section
Copyright (c) 2025 Ms. Vasundhara Bhosale, Dr. Akshada Koparde, Dr. Vandana Thorat, Ms. Mayuri Bhosale

This work is licensed under a Creative Commons Attribution 4.0 International License.
The publication is licensed under CC By and is open access. Copyright is with author and allowed to retain publishing rights without restrictions.