STUDY THE EFFECT OF SERUM CHEMERIN IN TYPE II DIABETES MELLITUS PATIENTS WITH AND WITHOUT DIABETIC RETINOPATHY

Authors

  • KALYANI CHAKKARAI Department of Biochemistry, Chettinad Academy of Research and Education, Chennai, Tamil Nadu, India
  • SANTHINI GOPALAKRISHNAN Department of Biochemistry, Chettinad Academy of Research and Education, Chennai, Tamil Nadu, India
  • THIVYAH PRABHA Department of Biochemistry, St. Peters Medical College Hospital and Research Institute, Hosur, Tamil Nadu, India
  • DIVYA PALAKSHA Department of Ophthalmology, St. Peters Medical College Hospital and Research Institute, Hosur, Tamil Nadu, India.

DOI:

https://doi.org/10.22159/ajpcr.2025v18i11.56883

Keywords:

Chemerin, Type 2 diabetes mellitus, Diabetic retinopathy, Adipokine, Angiogenesis

Abstract

Objective: Diabetic retinopathy (DR) arises from oxidative stress, inflammation, and pro-angiogenic signaling. Chemerin, a pleiotropic adipokine, links adipogenesis, glucose homeostasis, and inflammatory pathways. This study aimed to quantify serum chemerin in type 2 diabetes mellitus (T2DM) with and without DR.

Methods: This was comparative cross-sectional study. Adults were grouped as healthy controls (n=110), T2DM without DR (n=110), and T2DM with DR (n=110). Serum chemerin was measured by enzyme-linked immunoassay. Group differences were assessed using one-way analysis of variance (ANOVA) with Tukey’s HSD post hoc when assumptions were met or Games-Howell when variances were unequal. Within-DR staging (non-proliferative DR [NPDR] vs. proliferative DR [PDR]) used independent-samples tests.

Results: Chemerin differed significantly across groups (one-way ANOVA, p<0.01) and was higher in T2DM with DR than in T2DM without DR and controls. Mean±standard deviation chemerin concentrations were as follows: Controls 150.04±21.06 ng/mL; T2DM without DR 246.77±123.82 ng/ mL; T2DM with DR 259.33±133.32 ng/mL. Pairwise Tukey’s HSD comparisons were significant (all p<0.05). Within the DR cohort, serum chemerin was higher in PDR than NPDR (independent-samples t-test, p<0.05).

Conclusion: Elevated chemerin in DR supports adipokine-driven inflammation and angiogenesis in DR progression. Chemerin may aid risk stratification alongside glycemic and lipid indices, reinforcing the importance of early T2DM control and DR screening.

Downloads

Download data is not yet available.

References

1. Wong TY, Cheung CM, Larsen M, Sharma S, Simó R. Diabetic retinopathy. Nat Rev Dis Primers. 2016;2:16012. doi: 10.1038/ nrdp.2016.12, PMID 27159554

2. Sánchez-Rebordelo E, Cunarro J, Pérez-Sieira S, Seoane LM, Diéguez C, Nogueiras R, et al. Regulation of chemerin and CMKLR1 expression by nutritional status, postnatal development, and gender. Int J Mol Sci. 2018;19(10):2905. doi: 10.3390/ijms19102905, PMID 30257454

3. Teo ZL, Tham YC, Yu M, Chee ML, Rim TH, Cheung N, et al. Global prevalence of diabetic retinopathy and projection of burden through 2045: Systematic review and meta-analysis. Ophthalmology. 2021;128(11):1580-91. doi: 10.1016/j.ophtha.2021.04.027, PMID 33940045

4. Yau JW, Rogers SL, Kawasaki R, Lamoureux EL, Kowalski JW, Bek T, et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care. 2012;35(3):556-64. doi: 10.2337/dc11- 1909, PMID 22301125

5. Korobelnik JF, Do DV, Schmidt-Erfurth U, Boyer DS, Holz FG, Heier JS, et al. Intravitreal aflibercept for diabetic macular edema. Ophthalmology. 2014;121(11):2247-54. doi: 10.1016/j. ophtha.2014.05.006, PMID 25012934

6. Wykoff CC, Do DV, Goldberg RA, Dhoot DS, Lim JI, Du W, et al. Ocular and systemic risk factors for disease worsening among patients with NPDR: Post hoc analysis of the PANORAMA trial. Ophthalmol Retina. 2024;8(4):399-408.

7. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372(6505):425-32. doi: 10.1038/372425a0, PMID 7984236

8. Cooper OA, Taylor DJ, Crabb DP, Sim DA, McBain H. Psychological, social and everyday visual impact of diabetic macular oedema and diabetic retinopathy: A systematic review. Diabet Med. 2020;37(6):924-33. doi: 10.1111/dme.14125, PMID 31479552

9. Wittamer V, Grégoire F, Robberecht P, Vassart G, Communi D, Parmentier M. The C-terminal nonapeptide of mature chemerin activates the chemerin receptor with low nanomolar potency. J Biol Chem. 2004;279(11):9956-62. doi: 10.1074/jbc.M313016200, PMID 14701797

10. Bozaoglu K, Bolton K, McMillan J, Zimmet P, Jowett J, Collier G, et al. Chemerin is a novel adipokine associated with obesity and metabolic syndrome. Endocrinology. 2007;148(10):4687-94. doi: 10.1210/ en.2007-0175, PMID 17640997

11. Rourke JL, Dranse HJ, Sinal CJ. Towards an integrative approach to understanding the role of chemerin in human health and disease. Obes Rev. 2013;14(3):245-62. doi: 10.1111/obr.12009, PMID 23216632

12. Wilkinson CP, Ferris FL 3rd, Klein RE, Lee PP, Agardh CD, Davis M, et al. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology. 2003;110(9):1677-82. doi: 10.1016/S0161-6420(03)00475-5, PMID 13129861

13. Antuna-Puente B, Fève B, Fellahi S, Bastard JP. Adipokines: The missing link between insulin resistance and obesity. Diabetes Metab. 2008;34(1):2-11. doi: 10.1016/j.diabet.2007.09.004, PMID 18093861

14. Hart R, Greaves DR. Chemerin contributes to inflammation by promoting macrophage adhesion to VCAM-1 and fibronectin through clustering of VLA-4 and VLA-5. J Immunol. 2010;185(6):3728-39. doi: 10.4049/jimmunol.0902154, PMID 20720202

15. Bozaoglu K, Segal D, Shields KA, Cummings N, Curran JE, Comuzzie AG, et al. Chemerin is associated with metabolic syndrome phenotypes in a Mexican-American population. J Clin Endocrinol Metab. 2009;94(8):3085-8. doi: 10.1210/jc.2008-1833, PMID 19470637

16. Lehrke M, Becker A, Greif M, Stark R, Laubender RP, Von Ziegler F, et al. Chemerin is associated with markers of inflammation and components of the metabolic syndrome but does not predict coronary atherosclerosis. Eur J Endocrinol. 2009;161(2):339-44. doi: 10.1530/EJE-09-0380, PMID 19497986

17. Yamawaki H. Vascular effects of novel adipocytokines: Focus on vascular contractility and inflammatory responses. Biol Pharm Bull. 2011;34(3):307-10. doi: 10.1248/bpb.34.307, PMID 21372376

18. Roman AA, Parlee SD, Sinal CJ. Chemerin: A potential endocrine link between obesity and type 2 diabetes. Endocrine. 2012;42(2):243-51. doi: 10.1007/s12020-012-9698-8, PMID 22610747

19. Kaur J, Adya R, Tan BK, Chen J, Randeva HS. Identification of chemerin receptor (ChemR23) in human endothelial cells: Chemerin-induced endothelial angiogenesis. Biochem Biophys Res Commun. 2010;391(4):1762-8. doi: 10.1016/j.bbrc.2009.12.150, PMID 20044979

20. Wu L, Chen L, Li LL. Apelin/APJ system: A novel promising therapy target for pathological angiogenesis. Clin Chim Acta. 2017;466:78-84. doi: 10.1016/j.cca.2016.12.023, PMID 28025030

21. Jiang Y, Fan H, Xie J, Xu Y, Sun X. Association between adipocytokines and diabetic retinopathy: A systematic review and meta-analysis. Front Endocrinol (Lausanne). 2023;14:1271027. doi: 10.3389/ fendo.2023.1271027, PMID 37867518

22. Schalkwijk CG, Stehouwer CD. Vascular complications in diabetes mellitus: The role of endothelial dysfunction. Clin Sci (Lond). 2005;109(2):143-59. doi: 10.1042/CS20050025, PMID 16033329

23. Du J, Li R, Xu L, Ma R, Liu J, Cheng J, et al. Increased serum chemerin levels in diabetic retinopathy of type 2 diabetic patients. Curr Eye Res. 2016;41(1):114-20. doi: 10.3109/02713683.2015.1004718, PMID 25848840

24. Tahir NT, Falih IQ, Husaini FK, Zeghair SA. Study the effect of chemerin level in type II diabetic patients with and without retinopathy. Syst Rev Pharm. 2020;11:1856-63.

25. Halawa MR, Abdullah AA, Ibrahim NA, El-Sabawy AM. Chemerin is associated with diabetic retinopathy in type 2 diabetes. Egypt J Obes Diabetes Endocrinol. 2018;4(1):23-9. doi: 10.4103/ejode.ejode_26_17

Published

07-11-2025

How to Cite

KALYANI CHAKKARAI, et al. “STUDY THE EFFECT OF SERUM CHEMERIN IN TYPE II DIABETES MELLITUS PATIENTS WITH AND WITHOUT DIABETIC RETINOPATHY”. Asian Journal of Pharmaceutical and Clinical Research, vol. 18, no. 11, Nov. 2025, pp. 227-30, doi:10.22159/ajpcr.2025v18i11.56883.

Issue

Section

Original Article(s)