DEVELOPMENT AND OPTIMIZATION OF NANOCOCHLEATE-BASED DIOSMIN CARRIERS FOR CANCER TREATMENT
DOI:
https://doi.org/10.22159/ajpcr.2025v18i10.56929Keywords:
Cell cycle,, Breast cancer, Apoptosis,, QbDAbstract
Objective: This study aimed to develop and optimize diosmin-loaded nanocochleates as a potential targeted delivery system for cancer therapy.
Methods: A three-factor, three-level Box–Behnken design was employed to evaluate the effects of phospholipid choline (Factor A), cholesterol (Factor B), and stirring speed (Factor C) on particle size, entrapment efficiency, and polydispersity index (PDI). Diagnostic plots confirmed the model's robustness, with normal distribution of residuals and strong correlation between predicted and actual values.
Results: Interaction and 3D surface plots revealed that higher phospholipid and cholesterol concentrations increased particle size and entrapment efficiency, while optimal stirring speed improved uniformity. FTIR spectroscopy confirmed diosmin encapsulation by showing shifts in O–H and C=O stretching peaks, suggesting hydrogen bonding and lipid interactions. Differential Scanning Calorimetry (DSC) further supported the drug's successful encapsulation by revealing the disappearance of diosmin’s endothermic peak, indicating conversion from crystalline to amorphous form. In vitro drug release studies showed sustained release of diosmin from the nanocochleates compared to the pure drug, highlighting enhanced solubility and prolonged availability. Cell cycle analysis using flow cytometry demonstrated that the optimized formulation induced significant cell cycle arrest in MCF-7 breast cancer cells, confirming its potential antiproliferative activity.
Conclusion: These findings validate the nanocochleate system as a promising platform for targeted diosmin delivery, offering improved encapsulation efficiency, stability, sustained release, and therapeutic efficacy. The optimized formulation achieved a desirable balance among key parameters, supporting its application in cancer nanomedicine.
Downloads
References
1. Bhagwat DA, Swami PA, Nadaf SJ, Choudhari PB, Kumbar VM, More HN, et al. Capsaicin loaded solid SNEDDS for enhanced bioavailability and anticancer activity: In-vitro, in-silico, and in-vivo characterization. J Pharm Sci. 2021;110(1):280-91. doi: 10.1016/j.xphs.2020.10.020, PMID 33069713
2. Kumbar VM, Muddapur U, Bin Muhsinah A, Alshehri SA, Alshahrani MM, Almazni IA, et al. Curcumin-encapsulated nanomicelles improve cellular uptake and cytotoxicity in cisplatin-resistant human oral cancer cells. J Funct Biomater. 2022;13(4):158. doi: 10.3390/jfb13040158, PMID 36278627
3. Arnold M, Morgan E, Rumgay H, Mafra A, Singh D, Laversanne M, et al. Current and future burden of breast cancer: Global statistics for 2020 and 2040. Breast. 2022 Dec;66:15-23. doi: 10.1016/j. breast.2022.08.010. PMID 36084384
4. Kumbhar P, Kole K, Khadake V, Marale P, Manjappa A, Nadaf S, et al. Nanoparticulate drugs and vaccines: Breakthroughs and bottlenecks of repurposing in breast cancer. J Control Release. 2022 Sep;349:812-30. doi: 10.1016/j.jconrel.2022.07.039, PMID 35914614
5. Mehdi S, Chauhan A, Dhutty A. Cancer and new prospective to treat cancer. Int J Curr Pharm Res. 2023;15(6):16-22. doi: 10.22159/ ijcpr.2023v15i6.3078
6. Randive DS, Shejawal KP, Bhinge SD, Bhutkar MA, Jadhav NR, Patil SB, et al. Efficient in vitro oxaliplatin delivery with functionalized single-walled carbon nanotube for enhanced colon cancer treatment. Futur J Pharm Sci. 2023;9(1):91. doi: 10.1186/s43094-023-00543-8
7. Kumbhar P, Khade V, Khadake V, Marale P, Manjappa A, Nadaf S, et al. Ifosfamide-loaded cubosomes: An approach to potentiate cytotoxicity against MDA-MB-231 breast cancer cells. Fabad J Pharm Sci. 2022;48(1):37-52. doi: 10.55262/fabadeczacilik.1145208
8. Gerges SH, Wahdan SA, Elsherbiny DA, El-Demerdash E. Pharmacology of diosmin, a citrus flavone glycoside: An updated review. Eur J Drug Metab Pharmacokinet. 2022 Jan;47(1):1-18. doi: 10.1007/s13318-021-00731-y, PMID 34687440
9. Rahman L, Talha Khalil A, Ahsan Shahid S, Shinwari ZK, Almarhoon ZM, Alalmaie A, et al. Diosmin: A promising phytochemical for functional foods, nutraceuticals and cancer therapy. Food Sci Nutr. 2024;12(9):6070-92. doi: 10.1002/fsn3.4271, PMID 39554345
10. Kakkos SK, Nicolaides AN. Efficacy of micronized purified flavonoid fraction (Daflon®) on improving individual symptoms, signs and quality of life in patients with chronic venous disease: A systematic review and meta-analysis of randomized double-blind placebo-controlled trials. Int Angiol. 2018;37(2):143-54. doi: 10.23736/S0392- 9590.18.03975-5, PMID 29385792
11. Sheikh P, Lohsiriwat V, Shelygin Y. Micronized purified flavonoid fraction in hemorrhoid disease: A systematic review and meta-analysis. Adv Ther. 2020;37(6):2792-812. doi: 10.1007/s12325-020-01353-7, PMID 32399811
12. Rajasekar M, Baskaran P, Mary J, Sivakumar M, Selvam M. Revisiting diosmin for their potential biological properties and applications. Carbohydr Polym Technol Appl. 2024;7:100419. doi: 10.1016/j. carpta.2023.100419
13. Huwait E, Mobashir M. Potential and therapeutic roles of diosmin in human diseases. Biomedicines. 2022;10(5):1076. doi: 10.3390/ biomedicines10051076, PMID 35625813
14. Ma C, Dan M, Wang Y, Shu C, Jiao M, Shao Y, et al. Diosmin reduces the stability of Snail and cyclin D1 by targeting FAK to inhibit NSCLC progression. Phytomedicine. 2024;135:156135. doi: 10.1016/j. phymed.2024.156135, PMID 39405613
15. Chang YL, Li YF, Chou CH, Huang LC, Wu YP, Kao Y, et al. Diosmin inhibits glioblastoma growth through inhibition of autophagic flux. Int J Mol Sci. 2021;22(19):10453. doi: 10.3390/ijms221910453, PMID 34638796
16. Musyayyadah H, Wulandari F, Nangimi AF, Anggraeni AD, Ikawati M, Meiyanto E. The growth suppression activity of diosmin and PGV-1 co-treatment on 4T1 breast cancer targets mitotic regulatory proteins. Asian Pac J Cancer Prev. 2021;22(9):2929-38. doi: 10.31557/ APJCP.2021.22.9.2929, PMID 34582664
17. Anwer MK, Shakeel F. Measurement and correlation of solubility of diosmin in four pure solvents and β-cyclodextrin solution at 298.15K to 333.15K. Chin J Chem Eng. 2015;23(5):812-5. doi: 10.1016/j. cjche.2014.03.006
18. Freag MS, Elnaggar YS, Abdallah OY. Development of novel polymer-stabilized diosmin nano suspensions: In vitro appraisal and ex vivo permeation. Int J Pharm. 2013;454(1):462-71. doi: 10.1016/j. ijpharm.2013.06.039, PMID 23830765
19. Zheng Y, Zhang R, Shi W, Li L, Liu H, Chen Z, et al. Metabolism and pharmacological activities of the natural health-benefiting compound diosmin. Food Funct. 2020 Oct 21;11(10):8472-92. doi: 10.1039/ d0fo01598a, PMID 32966476
20. Mustafa S, Akbar M, Khan MA, Sunita K, Parveen S, Pawar JS, et al. Plant metabolite diosmin as the therapeutic agent in human diseases. Curr Res Pharmacol Drug Discov. 2022;3:100122. doi: 10.1016/j. crphar.2022.100122, PMID 36568270
21. Xie L, Cai C, Cao Y, Li X. Tea saponins as novel stabilizers for the development of diosmin nanosuspensions: Optimization and in vitro evaluation. J Drug Deliv Sci Technol. 2023;90:105118. doi: 10.1016/j. jddst.2023.105118
22. Sun WX, Zhang CT, Yu XN, Guo JB, Ma H, Liu K, et al. Preparation and pharmacokinetic study of diosmetin long-circulating liposomes modified with lactoferrin. J Funct Foods. 2022;91:105027. doi: 10.1016/j.jff.2022.105027
23. Rahman M, Almalki WH, Afzal O, Kazmi I, Alfawaz Altamimi AS, Alghamdi S, et al. Diosmin-loaded solid nanoparticles as nano-antioxidant therapy for management of hepatocellular carcinoma: QbD-based optimization, in vitro and in vivo evaluation. J Drug Deliv Sci Technol. 2021;61:102213. doi: 10.1016/j.jddst.2020.102213
24. Li S, Guan T, Lv H, Cai Y, Cao W, Zhang Z, et al. Fabrication of diosmin-loaded food-grade bilayer nanoparticles with modified chitosan and soy peptides and antioxidant properties examination. Food Chem X. 2024;21:101237. doi: 10.1016/j.fochx.2024.101237, PMID 3842607525. Sahu N, Soni D, Chandrashekhar B, Satpute DB, Saravanadevi S, Sarangi BK, et al. Synthesis of silver nanoparticles using flavonoids: Hesperidin, naringin and diosmin, and their antibacterial effects and cytotoxicity. Int Nano Lett. 2016;6(3):173-81. doi: 10.1007/s40089- 016-0184-9
26. Zingale E, Rizzo S, Bonaccorso A, Consoli V, Vanella L, Musumeci T, et al. Optimization of lipid nanoparticles by response surface methodology to improve the ocular delivery of diosmin: Characterization and in-vitro anti-inflammatory assessment. Pharmaceutics. 2022;14(9):1961. doi: 10.3390/pharmaceutics14091961, PMID 36145708
27. Anwer MK, Ahmed MM, Aldawsari MF, Iqbal M, Kumar V. Preparation and evaluation of diosmin-loaded diphenyl carbonate-cross-linked Cyclodextrin Nanosponges for breast cancer therapy. Pharmaceuticals (Basel). 2022;16(1):19. doi: 10.3390/ph16010019, PMID 36678517
28. Anwer MK, Jamil S, Ansari MJ, Al-Shdefat R, Ali BE, Ganaie MA, et al. Water soluble binary and ternary complexes of diosmin with β-cyclodextrin: Spectroscopic characterization, release studies and anti-oxidant activity. J Mol Liq. 2014;199:35-41. doi: 10.1016/j. molliq.2014.08.012
29. Tilawat M, Bonde S. Nanocochleates: A potential drug delivery system. J Mol Liq. 2021;334:116115. doi: 10.1016/j.molliq.2021.116115
30. Verekar R, Dessai S, Ayyanar M, Nadaf S, Gurav S. Nanocochleates: Revolutionizing lipid-based drug delivery with enhanced bioavailability, a review. Hybrid Adv. 2024;6:100215. doi: 10.1016/j. hybadv.2024.100215
31. Hajare AA, Mali SS, Ahir AA, Thorat JD, Salunkhe SS, Nadaf SJ, et al. Lipid nanoparticles: A modern formulation approach in topical drug delivery systems. J Adv Drug Deliv. 2014;1(1):30-7.
32. Nadaf S, Killedar S. Development and validation of RP–HPLC method for estimation of curcumin from nanocochleates and its application in in-vivo pharmacokinetic study. Acta Chim Slov. 2020;67:1100-10. doi: 10.17344/acsi.2020.5892
33. Shelake S, Ingrole A, Chougule N. Preparation optimization and evaluation of lenvatinib as a nanocochleate. Int J Pharm Sci. 2024;2(7):2136-42. doi: 10.5281/zenodo.13131860
34. Nadaf S, Killedar S. Novel liposome derived nanoparticulate drug delivery system. Cre J Pha Res 2015.1;3:117-28.
35. Panda P, De M, Basak S. Nanocochleates. In: Ray S, Nayak AK, editors. Design and Applications of Theranostic Nanomedicines. New Delhi: Woodhead Publishing; 2023. p. 143-73. doi: 10.1016/B978-0-323- 89953-6.00006-4
36. Bothiraja C, Rajput N, Poudel I, Rajalakshmi S, Panda B, Pawar A. Development of novel biofunctionalized chitosan decorated nanocochleates as a cancer targeted drug delivery platform. Artif Cells Nanomed Biotechnol. 2018;46(Sup1):447-61. doi: 10.1080/21691401.2018.1430584, PMID 29368543
37. Nadaf SJ, Killedar SG. Curcumin nanocochleates: Use of design of experiments, solid state characterization, in vitro apoptosis and cytotoxicity against breast cancer MCF-7 cells. J Drug Deliv Sci Technol. 2018;47:337-50. doi: 10.1016/j.jddst.2018.06.026
38. Hossain S, Islam A, Tasnim F, Hossen F, E-Zahan K, Asraf A. Antimicrobial, antioxidant and cytotoxicity study of Cu(II), Zn(II), Ni(II), and Zr(IV) complexes containing O, N donor Schiff base ligand. Int J Chem Res. 2024;8(4):1-11. doi: 10.22159/ijcr.2024v8i4.231
39. Jadhav S, Yadav A, Nadaf S. Enhanced antidiabetic performance through optimized charantin-loaded nanostructured lipid carriers: Formulation and in vivo studies in diabetic mice. J Drug Deliv Sci Technol. 2024;101(A):106208. doi: 10.1016/j. jddst.2024.106208
40. Andrade F, Jenipher C, Gurav N, Nadaf S, Khan MS, Kalaskar M, et al. Endophytic fungus Colletotrichum siamense derived silver nanoparticles: Biomimetic synthesis, process optimization and their biomedical applications. J Inorg Organomet Polym. 2024;34(12):6056- 70. doi: 10.1007/s10904-024-03235-9
41. Mane V, Killedar S, More H, Nadaf S, Salunkhe S, Tare H. Novel phytosomal formulation of Emblica officinalis extracts with its in vivo nootropic potential in rats: Optimization and development by Box-Behnken design. J Chem. 2024;2024:6644815. doi: 10.1155/2024/6644815
42. Dhavale RP, Nadaf SJ, Bhatia MS. Quantitative structure property relationship assisted development of fluocinolone acetonide loaded transfersomes for targeted delivery. J Drug Deliv Sci Technol. 2021;65:102758. doi: 10.1016/j.jddst.2021.102758
43. Gracias S, Ayyanar M, Peramaiyan G, Kalaskar M, Redasani V, Gurav N, et al. Fabrication of chitosan nanocomposites loaded with biosynthetic metallic nanoparticles and their therapeutic investigation. Environ Res. 2023;234:116609. doi: 10.1016/j.envres.2023.116609, PMID 37437861
44. Kumbhar PS, Manjappa AS, Shah RR, Nadaf SJ, Disouza JI. Nanostructured lipid carrier-based gel for repurposing simvastatin in localized treatment of breast cancer: Formulation design, development, and in vitro and in vivo characterization. AAPS PharmSciTech. 2023;24(5):106. doi: 10.1208/s12249-023-02565-0, PMID 37085596
45. Nadaf S, Jena GK, Rarokar N, Gurav N, Ayyanar M, Prasad S, et al. Biogenic and biomimetic functionalized magnetic nanosystem: Synthesis, properties, and biomedical applications. Hybrid Adv. 2023;3:100038. doi: 10.1016/j.hybadv.2023.100038
46. Kumbhar P, Waghmare P, Nadaf S, Manjappa A, Shah R, Disouza J. QbD and Six Sigma quality approach for chromatographic estimation of repurposed simvastatin from nanostructured lipid carriers. Microchem J. 2023;185:108310. doi: 10.1016/j.microc.2022.108310
47. Usapkar P, Saoji S, Jagtap P, Ayyanar M, Kalaskar M, Gurav N, et al. QbD-guided phospholipid-tagged nanonized boswellic acid naturosomal delivery for effective rheumatoid arthritis treatment. Int J Pharm X. 2024;7:100257. doi: 10.1016/j.ijpx.2024.100257, PMID 39668885
48. Rudroju A, Mothilal M. Development of nano sponges-based topical formulation for the effective delivery of selected antifungal drug. Int J Appl Pharm. 2024;16(5):146-55.
49. Nadaf SJ, Killedar SG, Kumbar VM, Bhagwat DA, Gurav SS. Pazopanib-laden lipid based nanovesicular delivery with augmented oral bioavailability and therapeutic efficacy against non-small cell lung cancer. Int J Pharm. 2022;628:122287. doi: 10.1016/j. ijpharm.2022.122287, PMID 36257467
50. Jadhav NR, Kambar RS, Nadaf SJ, Phadatare PD. Design, development, in vitro and in vivo evaluation of multicomponent tablet formulation for enteral delivery of atorvastatin calcium and felodipine. J Pharm Investig. 2015;45(2):115-30. doi: 10.1007/s40005-014-0148-x
51. Al Hattali WS, Samuel BA, Philip AK. Enhancing fluconazole solubility and bioavailability through solid dispersion techniques: Evaluation of polyethylene glycol 6000 and sodium carboxymethyl cellulose systems using fiber optics. Int J Pharm Pharm Sci. 2024;16(12):51-9. doi: 10.22159/ijpps.2024v16i12.52739
52. Nadaf SJ, Savekar PL, Bhagwat DA, Dagade KV, Gurav SS. Revolutionizing fast disintegrating tablets: Harnessing a dual approach with porous starch and sublimation technique. Heliyon. 2024;10(19):e38793. doi: 10.1016/j.heliyon.2024.e38793, PMID 39430475
53. Savekar PL, Nadaf SJ, Killedar SG, Kumbar VM, Hoskeri JH, Bhagwat DA, et al. Citric acid cross-linked pomegranate peel extract-loaded pH-responsive β-cyclodextrin/carboxymethyl tapioca starch hydrogel film for diabetic wound healing. Int J Biol Macromol. 2024;274(1):133366. doi: 10.1016/j.ijbiomac.2024.133366, PMID 38914385
54. Tandale P, Suttee A, Panzade P, Gadade D. Quercetin-loaded graphene oxide nanoparticles: Synthesis, optimization, and evaluation for breast cancer treatment. Int J Appl Pharm. 2025;17(3):243-51.
55. Chukwuemeka PO, Umar HI, Iwaloye O, Oretade OM, Olowosoke CB, Oretade OJ, et al. Predictive hybrid paradigm for cytotoxic activity of 1,3,4-thiadiazole derivatives as CDK6 inhibitors against human (MCF- 7) breast cancer cell line and its structural modifications: Rational for novel cancer therapeutics. J Biomol Struct Dyn. 2022;40(18):8518-37. doi: 10.1080/07391102.2021.1913231, PMID 33890551
Published
How to Cite
Issue
Section
Copyright (c) 2025 SARDAR SHELAKE, SHITALKUMAR PATIL

This work is licensed under a Creative Commons Attribution 4.0 International License.
The publication is licensed under CC By and is open access. Copyright is with author and allowed to retain publishing rights without restrictions.