EFFICACY OF TAUROURSODEOXYCHOLIC ACID ON BIOCHEMICAL AND HISTOPATHOLOGICAL CHANGES IN 1-METHYL-4-PHENYL-1,2,3,6-TETRAHYDROPYRIDINE INDUCED PARKINSON’S DISEASE MICE MODEL

Authors

  • MAHALAKSHMI RAJAN Department of Research and Development, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India https://orcid.org/0000-0002-2390-987X
  • SENTHILKUMAR SIVANESAN Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
  • KALPANA RAMACHANDRAN Department of Anatomy, Sri Ramachandra Medical College and Research Institute, Chennai, Tamil Nadu, India
  • ASHOKVARDHAN N Department of Biochemistry, Singareni Institute of Medical Sciences, Ramagundam, Telangana, India.

DOI:

https://doi.org/10.22159/ajpcr.2025v18i12.57160

Keywords:

Parkinson’s disease, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, Tauroursodeoxycholic acid, Syndopa, Oxidative biomarkers, Histomorphometry, C57BL/6 mice

Abstract

Objectives: One of the main pathological features of Parkinson’s disease (PD) is the loss of dopaminergic neurons in the nigrostriatal pathway. Pre-clinical research has shown that tauroursodeoxycholic acid (TUDCA) monotherapy can alleviate the neuropathological complications of PD. The present study aimed to compare the therapeutic benefits of combination TUDCA and syndopa therapy with those of TUDCA and syndopa monotherapy in a mouse model of PD induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP).

Methods: Male C57BL/6 mice received MPTP (30 mg/kg body weight/day, intraperitoneal, 5 days) to induce PD, followed by TUDCA (150 mg/kg body weight/day, intraperitoneal), syndopa (12 mg/kg body weight/day, oral), or both for 21 days. The midbrain reactive oxygen species (ROS), malondialdehyde (MDA), peroxynitrite, nitric oxide (NO), and urea contents, as well as the total antioxidant capacity (TAC), were measured. Midbrain and liver histopathology and histomorphometry assessed neuronal and hepatic damage.

Results: MPTP increased the ROS (2.41-fold, p<0.01), MDA (2.07-fold, p<0.01), peroxynitrite (1.62-fold, p<0.01), NO (2.23-fold, p<0.01), and urea (1.88-fold, p<0.01) contents and reduced the TAC (1.92-fold, p<0.01) compared with the control. Combination therapy reduced the ROS content by 2.33 fold, the MDA content by 2.12 fold, the urea levels by 1.83 fold, peroxynitrite levels by 1.59 fold, NO by 2.65 fold, and neuronal loss by 3.68 fold (all p<0.05 vs. the MPTP group), outperforming both TUDCA (1.66 fold reduction in the ROS content, p>0.05, NS) and syndopa (1.38 fold reduction in the ROS content, p>0.05, NS) monotherapy. The same trend followed for other parameters, such as urea, TAC, MDA, NO and peroxynitrite. Moreover, the histopathology and histomorphometric results confirmed that TUDCA monotherapy and combination therapy markedly attenuated MPTP-induced neuronal and liver damage, with the combination therapy showing superior efficacy.

Conclusions: TUDCA + syndopa offers synergistic neuroprotection and represents a novel therapeutic strategy for PD.

Downloads

Download data is not yet available.

References

1. Lotankar S, Prabhavalkar KS, Bhatt LK. Biomarkers for Parkinson’s disease: Recent advancement. Neurosci Bull. 2017 Oct;33(5):585-97. doi: 10.1007/s12264-017-0183-5, PMID 28936761

2. Braak H, Braak E. Pathoanatomy of Parkinson’s disease. J Neurol. 2000 Apr;247 Suppl 2:II3-10. doi: 10.1007/PL00007758, PMID 10991663

3. Singhal B, Lalkaka J, Sankhla C. Epidemiology and treatment of Parkinson’s disease in India. Parkinsonism Relat Disord. 2003 Aug;9 Suppl 2:S105-9. doi: 10.1016/S1353-8020(03)00024-5, PMID 12915075

4. Su D, Cui Y, He C, Yin P, Bai R, Zhu J, et al. Projections for prevalence of Parkinson’s disease and its driving factors in 195 countries and territories to 2050: Modelling study of Global Burden of Disease Study2021. BMJ. 2025 Mar 5;388(8458):e080952. doi: 10.1136/bmj-2024- 080952, PMID 40044233

5. Chen ZJ, Liang CY, Yang LQ, Ren SM, Xia YM, Cui L, et al. Association of Parkinson’s disease with microbes and microbiological therapy. Front Cell Infect Microbiol. 2021 Mar 8; 11:619354.

6. Bisaglia M. Mediterranean diet and Parkinson’s disease. Int J Mol Sci. 2022 Dec 20;24(1):42. doi: 10.3390/ijms24010042, PMID 36613486

7. Garcia-Ruiz PJ, Chaudhuri KR, Martinez-Martin P. Non-motor symptoms of Parkinson’s disease A review…from the past. J Neurol Sci. 2014 Mar 15;338(1-2):30-3. doi: 10.1016/j.jns.2014.01.002, PMID 24433931

8. Srinivasan E, Chandrasekhar G, Chandrasekar P, Anbarasu K, Vickram AS, Karunakaran R, et al. Alpha-synuclein aggregation in Parkinson’s disease. Front Med (Lausanne). 2021;8:736978. doi: 10.3389/fmed.2021.736978, PMID 34733860

9. Kwon DK, Kwatra M, Wang J, Ko HS. Levodopa-induced dyskinesia in Parkinson’s disease: Pathogenesis and emerging treatment strategies. Cells. 2022 Nov 23;11(23):3736. doi: 10.3390/cells11233736, PMID 36496996

10. Kispotta S, Das D, Prusty SK. A recent update on drugs and alternative approaches for Parkinsonism. Neuropeptides. 2024 Apr;104:102415. doi: 10.1016/j.npep.2024.102415, PMID 38402775

11. Johnson WM, Wilson-Delfosse AL, Mieyal JJ. Dysregulation of glutathione homeostasis in neurodegenerative diseases. Nutrients. 2012 Oct 9;4(10):1399-440.

12. Pandey N, Karthik VP, Selva P, Hazeena P. A network pharmacology-based drug repurposing study of levetiracetam uncovers its interaction with multi-drug targets in Parkinson’s disease. Int J Appl Pharm. 2024;16(6):69-78. doi: 10.22159/ijap.2024v16i6.51887

13. Sanitha M, Vengatachalam G. A review of oxidative stress induced Parkinsonism and the potentials of antioxidants in treating Parkinson’s diseases. Rev Electron Vet. 2024;25(1):1591-8. doi: 10.69980/redvet. v25i1.908

14. Ramachandra VH, Sivanesan S, Koppal A, Anandakumar S, Howell MD, Sukumar E, et al. Embelin and levodopa combination therapy for improved Parkinson’s disease treatment. Transl Neurosci. 2022 Jun 29;13(1):145-62. doi: 10.1515/tnsci-2022-0224, PMID 35855085

15. Shichiri M. The role of lipid peroxidation in neurological disorders. J Clin Biochem Nutr. 2014 May;54(3):151-60. doi: 10.3164/jcbn.14- 10, PMID 24895477

16. Naudí A, Cabré R, Dominguez-Gonzalez M, Ayala V, Jové M, Mota- Martorell N, et al. Region-specific vulnerability to lipid peroxidation and evidence of neuronal mechanisms for polyunsaturated fatty acid biosynthesis in the healthy adult human central nervous system. Biochim Biophys Acta Mol Cell Biol Lipids. 2017 May;1862(5):485-95. doi: 10.1016/j.bbalip.2017.02.001, PMID 28185952

17. Nam TG. Lipid peroxidation and its toxicological implications. Toxicol Res. 2011 Mar; 27(1):1-6. doi: 10.5487/TR.2011.27.1.001

18. Ayala A, Muñoz MF, Argüelles S. Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev. 2014;2014:360438. doi: 10.1155/2014/360438

19. Akyazı O, Korkmaz D, Cevher SC. Experimental Parkinson models and green chemistry approach. Behav Brain Res. 2024 Aug 5;471:115092. doi: 10.1016/j.bbr.2024.115092, PMID 38844056

20. Dringen R. Metabolism and functions of glutathione in brain. Prog Neurobiol. 2000 Dec;62(6):649-71. doi: 10.1016/S0301- 0082(99)00060-X

21. Smeyne M, Smeyne RJ. Glutathione metabolism and Parkinson’s disease. Free Radic Biol Med. 2013 Sep;62:13-25. doi: 10.1016/j. freeradbiomed.2013.05.001, PMID 23665395

22. Dovonou A, Bolduc C, Soto Linan V, Gora C, Peralta MR, Lévesque M. Animal models of Parkinson’s disease: Bridging the gap between disease hallmarks and research questions. Transl Neurodegener. 2023;12(1):36. doi: 10.1186/s40035-023-00368-8, PMID 37468944

23. Chen SJ, Li G, Zhang Y, Guan YL, Li XJ, Liu SH, et al. Comparison and evaluation of MPTP-induced subacute and chronic models of Parkinson’s disease in mice. Zhongguo ZuzhiGongcheng Yanjiu. 2022;26(8):1247-52.

24. Meredith GE, Rademacher DJ. MPTP mouse models of Parkinson’s disease: An update. J Parkinsons Dis. 2011;1(1):19-33. doi: 10.3233/ JPD-2011-11023, PMID 23275799

25. Schildknecht S, Pape R, Meiser J, Karreman C, Strittmatter T, Odermatt M, et al. Preferential extracellular generation of the active parkinsonian toxin MPP+ by transporter-independent export of the intermediate MPDP+. Antioxid Redox Signal. 2015 Nov 1;23(13):1001-16. doi: 10.1089/ ars.2015.6297, PMID 26413876

26. Mallajosyula JK, Kaur D, Chinta SJ, Rajagopalan S, Rane A, Nicholls DG, et al. MAO-B elevation in mouse brain astrocytes results in Parkinson’s pathology. PLoS One. 2008 Feb 20;3(2):e1616. doi: 10.1371/journal.pone.0001616, PMID 18286173

27. Chen Y, Ni YY, Liu J, Lu JW, Wang F, Wu XL, et al. Dopamine receptor 3 might be an essential molecule in 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine-induced neurotoxicity. BMC Neurosci. 2013;14:76. doi: 10.1186/1471-2202-14-76, PMID 23902361

28. Subramaniam SR, Chesselet MF. Mitochondrial dysfunction and oxidative stress in Parkinson’s disease. Prog Neurobiol. 2013 Jul- Aug;106-107:17-32. doi: 10.1016/j.pneurobio.2013.04.004, PMID 23643800

29. Kung HC, Lin KJ, Kung CT, Lin TK. Oxidative stress, mitochondrial dysfunction, and neuroprotection of polyphenols with respect to resveratrol in Parkinson’s disease. Biomedicines. 2021 Jul 30;9(8):918.

30. Hwang DJ, Kwon KC, Song HK, Kim KS, Jung YS, Hwang DY, et al. Comparative analysis of dose-dependent neurotoxic response to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in C57BL/6 N mice derived from three different sources. Lab Anim Res. 2019;35:10. doi: 10.1186/s42826-019-0012-2, PMID 32257898

31. Kupsch A, Hauser RA, Jankovic J, Rascol O, Treuer H, Schwarz J, et al. Monoamine oxidase-inhibition and MPTP-induced neurotoxicity in the non-human primate: Comparison of rasagiline (TVP 1012) with selegiline. J Neural Transm (Vienna). 2001;108(7):755-65. doi: 10.1007/s007020170063

32. Castro-Caldas M, Carvalho AN, Rodrigues E, Henderson CJ, Wolf CR, Rodrigues CM, et al. Tauroursodeoxycholic acid prevents MPTP-induced dopaminergic cell death in a mouse model of Parkinson’s disease. Mol Neurobiol. 2012;46(2):475-86. doi: 10.1007/s12035-012- 8295-4, PMID 22773138

33. Ramalho RM, Viana RJ, Low WC, Steer CJ, Rodrigues CM. Bile acids and apoptosis modulation: An emerging role in experimental Alzheimer’s disease. Trends Mol Med. 2008 Feb;14(2):54-62. doi: 10.1016/j.molmed.2007.12.001

34. Lo AC, Callaerts-Vegh Z, Nunes AF, Rodrigues CM, D’Hooge R. Tauroursodeoxycholic acid (TUDCA) supplementation prevents cognitive impairment and amyloid deposition in APP/PS1 mice. Neurobiol Dis. 2013 Feb;50:21-9. doi: 10.1016/j.nbd.2012.09.003, PMID 22974733

35. Khalaf K, Tornese P, Cocco A, Albanese A. Tauroursodeoxycholic acid: A potential therapeutic tool in neurodegenerative diseases. Transl Neurodegener. 2022 Jun 4;11(1):33. doi: 10.1186/s40035-022-00307-z, PMID 35659112

36. Kusaczuk M. Tauroursodeoxycholate-bile acid with chaperoning activity: Molecular and cellular effects and therapeutic perspectives. Cells. 2019 Nov 20;8(12):1471. doi: 10.3390/cells8121471, PMID 31757001

37. Mendes MO, Rosa AI, Carvalho AN, Nunes MJ, Dionísio P, Rodrigues E, et al. Neurotoxic effects of MPTP on mouse cerebral cortex: Modulation of neuroinflammation as a neuroprotective strategy. Mol Cell Neurosci. 2019;96:1-9. doi: 10.1016/j.mcn.2019.01.003, PMID 30771505

38. Rosa AI, Duarte-Silva S, Silva-Fernandes A, Nunes MJ, Carvalho AN, Rodrigues E, et al. Tauroursodeoxycholic acid improves motor symptoms in a mouse model of Parkinson’s disease. Mol Neurobiol. 2018 Dec;55(12):9139-55. doi: 10.1007/s12035-018-1062-4, PMID 29651747

39. Zhang Z, Chen J, Chen F, Yu D, Li R, Lv C, et al. Tauroursodeoxycholic acid alleviates secondary injury in the spinal cord via up-regulation of CIBZ gene. Cell Stress Chaperones. 2018 Jul;23(4):551-60. doi: 10.1007/s12192-017-0862-1, PMID 29151236

40. Carvalho MM, Campos FL, Marques M, Soares-Cunha C, Kokras N, Dalla C, et al. Effect of levodopa on reward and impulsivity in a rat model of Parkinson’s disease. Front Behav Neurosci. 2017;11:145. doi: 10.3389/fnbeh.2017.00145, PMID 28848409

41. Graham JM. Homogenization of mammalian tissues. ScientificWorldJournal. 2002;2:1626-9. doi: 10.1100/tsw.2002.849, PMID 12806150

42. Rao R. Oxidative stress-induced disruption of epithelial and endothelial tight junctions. Front Biosci. 2008 May 1;13:7210-26. doi: 10.2741/3223, PMID 18508729

43. Üremiş N, Üremiş MM. Oxidative/nitrosative stress, apoptosis, and redox signaling: Key players in neurodegenerative diseases. J Biochem Mol Toxicol. 2025;39(1):e70133. doi: 10.1002/jbt.70133, PMID 3979955944. Bej E, Cesare P, Volpe AR, D’Angelo M, Castelli V. Oxidative stress and neurodegeneration: Insights and therapeutic strategies for Parkinson’s disease. Neurol Int. 2024;16(3):502-17. doi: 10.3390/ neurolint16030037, PMID 38804477

45. Koracevic D, Koracevic G, Djordjevic V, Andrejevic S, Cosic V. Method for the measurement of antioxidant activity in human fluids. J Clin Pathol. 2001 May;54(5):356-61. doi: 10.1136/jcp.54.5.356, PMID 11328833

46. Rajasankar S, Manivasagam T, Surendran S. Ashwagandha leaf extract: A potential agent in treating oxidative damage and physiological abnormalities seen in a mouse model of Parkinson’s disease. Neurosci Lett. 2009;454(1):11-5. doi: 10.1016/j.neulet.2009.02.044, PMID 19429045

47. Uttara B, Singh AV, Zamboni P, Mahajan RT. Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol. 2009 Mar;7(1):65-74. doi: 10.2174/157015909787602823, PMID 19721819

48. Otulak-Kozieł K, Kozieł E, Treder K, Rusin P. Role of peroxynitrite in the pathogenesis of Parkinson’s disease and its fluorescence imaging-based detection. Int J Mol Sci. 2024;25(10):5256. doi: 10.3390/ ijms25105256, PMID 38791293

49. Olufunmilayo EO, Gerke-Duncan MB, Holsinger RM. Oxidative stress and antioxidants in neurodegenerative disorders. Antioxidants (Basel). 2023 Feb 18;12(2):517. doi: 10.3390/antiox12020517, PMID 36830075

50. Patassini S, Begley P, Reid SJ, Xu J, Church SJ, Curtis M, et al. Identification of elevated urea as a severe, ubiquitous metabolic defect in the brain of patients with Huntington’s disease. Biochem Biophys Res Commun. 2015 Dec 4;468(1-2):161-6. doi: 10.1016/j. bbrc.2015.10.140, PMID 26522227

51. Sheikh M, Saiyyad A, Jirvankar PS. Exosomes as mediators of neuroinflammation in Parkinson’s disease: A review. Int J Appl Pharm. 2025;17(3):80-92. doi: 10.22159/ijap.2025v17i3.53756

52. Wu DC, Teismann P, Tieu K, Vila M, Jackson-Lewis V, Ischiropoulos H, et al. NADPH oxidase mediates oxidative stress in the 1-methyl-4- phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. Proc Natl Acad Sci U S A. 2003 May 13;100(10):6145-50. doi: 10.1073/ pnas.0937239100, PMID 12721370

53. Khan Z, Ali SA. Oxidative stress-related biomarkers in Parkinson’s disease: A systematic review and meta-analysis. Iran J Neurol. 2018 Jul 6;17(3):137-44. doi: 10.18502/ijnl.v17i3.373, PMID 30886681

54. Mbiydzenyuy NE, Ninsiima HI, Valladares MB, Pieme CA. Zinc and linoleic acid pre-treatment attenuates biochemical and histological changes in the midbrain of rats with rotenone-induced Parkinsonism. BMC Neurosci. 2018 May 9;19(1):29. doi: 10.1186/s12868-018- 0429-9, PMID 29739324

55. Fu Y, He Y, Phan K, Bhatia S, Pickford R, Wu P, et al. Increased unsaturated lipids underlie lipid peroxidation in synucleinopathy brain. Acta Neuropathol Commun. 2022 Nov 14;10(1):165. doi: 10.1186/ s40478-022-01469-7, PMID 36376990

56. Sarbishegi M, Charkhat Gorgich EA. The effects of celecoxib on rotenone-induced rat model of Parkinson’s disease: Suppression of neuroinflammation and oxidative stress-mediated apoptosis. Gene Cell Tissue. 2019 May 6;6(2):e92178. doi: 10.5812/gct.92178

57. Asanuma M, Miyazaki I. Glutathione and related molecules in Parkinsonism. Int J Mol Sci. 2021;22(16):8689. doi: 10.3390/ ijms22168689, PMID 34445395

58. Chuang JI, Chen TH. Effect of melatonin on temporal changes of reactive oxygen species and glutathione after MPP(+) treatment in human astrocytoma U373MG cells. J Pineal Res. 2004;36(2):117-25. doi: 10.1046/j.1600-079X.2003.00107.x, PMID 14962063

59. Shukla D, Goel A, Mandal PK, Joon S, Punjabi K, Arora Y, et al. Glutathione depletion and concomitant elevation of susceptibility in patients with Parkinson’s disease: State-of-the-art MR spectroscopy and neuropsychological study. ACS Chem Neurosci. 2023 Dec 20;14(24):4383-94. doi: 10.1021/acschemneuro.3c00717, PMID 38050970

60. Zhang S, Wan G, Qiu Y, Zhang M, Deng H, Wang Q, et al. Urea cycle dysregulation drives metabolic stress and neurodegeneration in Parkinson’s disease. NPJ Parkinsons Dis. 2025;11(1):237. doi: 10.1038/ s41531-025-01099-5, PMID 40790122

61. Scholefield M, Church SJ, Xu J, Patassini S, Roncaroli F, Hooper NM, et al. Severe and regionally widespread increases in tissue urea in the human brain represent a novel finding of pathogenic potential in Parkinson’s disease dementia. Front Mol Neurosci. 2021;14:711396. doi: 10.3389/fnmol.2021.711396, PMID 34751215

62. Kavuri S, Sivanesan S, Howell MD, Vijayaraghavan R, Rajadas J. Studies on Parkinson’s-disease-linked genes, brain urea levels and histopathology in rotenone-induced Parkinson’s disease rat model. World J Neurosci. 2020;10(4):216-34. doi: 10.4236/wjns.2020.104021

63. Stykel MG, Ryan SD. Nitrosative stress in Parkinson’s disease. NPJ Parkinsons Dis. 2022 Aug 11;8(1):104. doi: 10.1038/s41531-022- 00370-3, PMID 35953517

64. Nunes C, Almeida L, Laranjinha J. Synergistic inhibition of respiration in brain mitochondria by nitric oxide and dihydroxyphenylacetic acid (DOPAC). Implications for Parkinson’s disease. Neurochem Int. 2005 Aug;47(3):173-82. doi: 10.1016/j.neuint.2005.03.005, PMID 15893407

65. Nunes C, Barbosa RM, Almeida L, Laranjinha J. Nitric oxide and DOPAC-induced cell death: from GSH depletion to mitochondrial energy crisis. Mol Cell Neurosci. 2011 Sep;48(1):94-103. doi: 10.1016/j.mcn.2011.06.009, PMID 21708261

66. Kouti L, Noroozian M, Akhondzadeh S, Abdollahi M, Javadi MR, Faramarzi MA, et al. Nitric oxide and peroxynitrite serum levels in Parkinson’s disease: Correlation of oxidative stress and the severity of the disease. Eur Rev Med Pharmacol Sci. 2013 Apr;17(7):964-70. PMID 23640445

67. Anjo SI, He Z, Hussain Z, Farooq A, McIntyre A, Laughton CA, et al. Protein oxidative modifications in neurodegenerative diseases: from advances in detection and modelling to their use as disease biomarkers. Antioxidants (Basel). 2024;13(6):681. doi: 10.3390/antiox13060681, PMID 38929122

68. Kavya R, Saluja R, Singh S, Dikshit M. Nitric oxide synthase regulation and diversity: Implications in Parkinson’s disease. Nitric Oxide. 2006 Dec;15(4):280-94. doi: 10.1016/j.niox.2006.07.003, PMID 16934505

69. Parry GJ, Rodrigues CM, Aranha MM, Hilbert SJ, Davey C, Kelkar P, et al. Safety, tolerability, and cerebrospinal fluid penetration of ursodeoxycholic acid in patients with amyotrophic lateral sclerosis. Clin Neuropharmacol. 2010 Jan-Feb;33(1):17-21. doi: 10.1097/ WNF.0b013e3181c47569, PMID 19935406

70. Mertens KL, Kalsbeek A, Soeters MR, Eggink HM. Bile acid signaling pathways from the enterohepatic circulation to the central nervous system. Front Neurosci. 2017;11:617. doi: 10.3389/fnins.2017.00617, PMID 29163019

71. Chiang JY, Ferrell JM. Bile acids as metabolic regulators and nutrient sensors. Annu Rev Nutr. 2019 Aug 21;39:175-200. doi: 10.1146/ annurev-nutr-082018-124344, PMID 31018107

72. Keene CD, Rodrigues CM, Eich T, Chhabra MS, Steer CJ, Low WC. Tauroursodeoxycholic acid, a bile acid, is neuroprotective in a transgenic animal model of Huntington’s disease. Proc Natl Acad Sci U S A. 2002 Aug 6;99(16):10671-6. doi: 10.1073/pnas.162362299, PMID 12149470

73. Hou Y, Luan J, Huang T, Deng T, Li X, Xiao Z, et al. Tauroursodeoxycholic acid alleviates secondary injury in spinal cord injury mice by reducing oxidative stress, apoptosis, and inflammatory response. J Neuroinflammation. 2021 Sep 20;18(1):216. doi: 10.1186/ s12974-021-02248-2, PMID 34544428

74. Nutt JG. Continuous dopaminergic stimulation: is it the answer to the motor complications of Levodopa? Mov Disord 2007;22:1-9. doi:10.1002/mds.21060.

75. Moreira S, Fonseca I, Nunes MJ, Rosa A, Lemos L, Rodrigues E, et al. Nrf2 activation by tauroursodeoxycholic acid in experimental models of Parkinson’s disease. Exp Neurol. 2017 Sep;295:77-87. doi: 10.1016/j.expneurol.2017.05.009, PMID 28552716

76. Sabat MJ, Wiśniewska-Becker AM, Markiewicz M, Marzec KM, Dybas J, Furso J, et al. Tauroursodeoxycholic acid (TUDCA)-lipid interactions and antioxidant properties of TUDCA studied in model of photoreceptor membranes. Membranes (Basel). 2021 Apr 29;11(5):327. doi: 10.3390/membranes11050327, PMID 33946822

77. Soares R, Ribeiro FF, Xapelli S, Genebra T, Ribeiro MF, Sebastião AM, et al. Tauroursodeoxycholic acid enhances mitochondrial biogenesis, neural stem cell pool, and early neurogenesis in adult rats. Mol Neurobiol. 2018 May;55(5):3725-38. doi: 10.1007/s12035-017- 0592-5, PMID 28534273

78. Yang MC, McLean AJ, Le Couteur DG. Cell membrane transport of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in the liver and systemic bioavailability. Biochem Biophys Res Commun. 2001 Nov 23;289(1):130-6. doi: 10.1006/bbrc.2001.5954, PMID 11708789

79. Chen X, Shao B, Yu C, Yao Q, Ma P, Li H, et al. Energy disorders caused by mitochondrial dysfunction contribute to α-amatoxin-induced liverfunction damage and liver failure. Toxicol Lett. 2021 Jan 1;336:68-79. doi: 10.1016/j.toxlet.2020.10.003, PMID 33098907

80. Henzel K, Thorborg C, Hofmann M, Zimmer G, Leuschner U. Toxicity of ethanol and acetaldehyde in hepatocytes treated with ursodeoxycholic or tauroursodeoxycholic acid. Biochim Biophys Acta. 2004 Feb 2;1644(1):37-45. doi: 10.1016/j.bbamcr.2003.10.017, PMID 14741743

81. Portincasa P, Palmieri V, Doronzo F, Vendemiale G, Altomare E, Sabbà C, et al. Effect of tauroursodeoxycholic acid on serum liver enzymes and dyspeptic symptoms in patients with chronic active hepatitis. Curr Ther Res. 1993;53(5):521-32. doi: 10.1016/S0011- 393X(05)80659-9

82. Bai C, Song X, Yan J, Xu J, Zhou Y, Sun Z, et al. Tauroursodeoxycholic acid induces liver regeneration and alleviates fibrosis through GATA3 activation. Biomedicines. 2025 Apr 9;13(4):910. doi: 10.3390/ biomedicines13040910, PMID 40299532

83. Lebeaupin C, Proics E, de Bieville CH, Rousseau D, Bonnafous S, Patouraux S, et al. ER stress induces NLRP3 inflammasome activation and hepatocyte death. Cell Death Dis. 2015 Sep 10;6(9):e1879. doi: 10.1038/cddis.2015.248, PMID 26355342

84. Vasanthi C, Sureshkumar R. Neuroprotection by resveratrol: A review on brain delivery strategies for Alzheimer’s and Parkinson’s disease. J Appl Pharm Sci. 2022;12(7):1-17.

85. Rajan M, Sivanesan S, Ramachandran K, Goyal P, Palanivelu P, Ghosh A, et al. TUDCA combined with Syndopa protects the midbrain and gut from MPTP toxicity in a Parkinson’s disease mouse model: Immunohistochemical evidence. Biomol Biomed. 2025 Aug 4;25(12):2776-88. doi: 10.17305/ bb.2025.12519, PMID 40763215

Published

07-12-2025

How to Cite

MAHALAKSHMI RAJAN, et al. “EFFICACY OF TAUROURSODEOXYCHOLIC ACID ON BIOCHEMICAL AND HISTOPATHOLOGICAL CHANGES IN 1-METHYL-4-PHENYL-1,2,3,6-TETRAHYDROPYRIDINE INDUCED PARKINSON’S DISEASE MICE MODEL”. Asian Journal of Pharmaceutical and Clinical Research, vol. 18, no. 12, Dec. 2025, pp. 208-1, doi:10.22159/ajpcr.2025v18i12.57160.

Issue

Section

Original Article(s)