PHENOTYPIC AND GENOTYPIC CHARACTERIZATION OF MULTIDRUG-RESISTANT KLEBSIELLA PNEUMONIAE PRODUCING EXTENDED-SPECTRUM Β-LACTAMASE AND CARBAPENEMASE

Authors

  • ROHIT KUMAR Department of Microbiology, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar (Deemed to be) University, Mullana, Haryana, India.
  • RUMANA FAROOQ MIR Department of Microbiology, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar (Deemed to be) University, Mullana, Haryana, India.
  • ROSY BALA Department of Microbiology, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar (Deemed to be) University, Mullana, Haryana, India
  • NARINDER KAUR Department of Microbiology, Maharishi Markandeshwar College of Medical Science and Research, Maharishi Markandeshwar University, Ambala, Haryana, India.
  • DIPANKAR BISWAS Department of Microbiology, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar (Deemed to be) University, Mullana, Haryana, India

DOI:

https://doi.org/10.22159/ajpcr.2025v18i12.57172

Keywords:

Multi-drug Resistant, Extended-spectrum beta lactamase, Carbapenem-resistant Klebsiella pneumoniae, extensively drug-resistant

Abstract

Objective: Antimicrobial resistance poses a worldwide health challenge with significant social and economic consequences. The increasing prevalence of extended-spectrum β-lactamases (ESBL) and carbapenemase (CP)-producing Klebsiella pneumoniae calls for urgent research and new drug development. These genes undermine infection control efforts because of their association with multidrug resistance (MDR).

Methods: This cross-sectional study was conducted from April 2022 to April 2025 at the microbiology department of MMIMSR, Mullana, Ambala. Identification and antibiotic susceptibility testing for K. pneumoniae were performed using the Vitek-2 Compact (BioMérieux). The presence of ESBL and CP-producing isolates was phenotypically confirmed using the combined disc method. Genes KPC, NDM, IMP, VIM, OXA-48, TEM, CTX-M, and SHV were detected using singleplex conventional polymerase chain reaction.

Results: Out of 612 K. pneumoniae isolates, 375 non-repetitive MDR strains were obtained from patients at M.M. Hospital, Ambala. The majority of these isolates came from males (57.6%), urine samples (61.3%), and hospitalized patients (75.5%). All isolates demonstrated complete resistance (100%) to β-lactams (Cephalosporins and carbapenems), with high resistance rates shown by cefepime (96.8%), ciprofloxacin (95.2%), gentamicin (93.6%), and trimethoprim-sulfamethoxazole (76%). Tigecycline (62%) and nitrofurantoin (53%) showed the most activity. ESBL production was identified in 51.2% of isolates, and CP production in 48.3%; Modified carbapenem inactivation method positivity was 70.1%, with 42.1% metallo- β-lactamase and 10.6% serine CPs. Among resistance genes, CTX-M (45.8%) and TEM (23.7%) were the most common ESBL determinants, while NDM (48.2%) and OXA-48 (37.8%) were the most prevalent CPs, followed by KPC (13.6%). The co-occurrence of genes was frequent, notably NDM+OXA-48 (16.2%) and triple KPC+NDM+OXA-48 (0.8%). All isolates were negative for SHV, IMP, and VIM genes.

Conclusion: The findings highlight the need for urgent infection control. Policymakers should establish guidelines for regulating antibiotic sales and require susceptibility testing before prescribing antibiotics. Nationwide monitoring of carbapenem resistance and gene profiling is essential for better antimicrobial use.

Downloads

Download data is not yet available.

References

1. Salawudeen A, Raji YE, Jibo GG, Desa MN, Neoh HM, Masri SN, et al. Epidemiology of multidrug-resistant Klebsiella pneumoniae infection in clinical setting in South-Eastern Asia: A systematic review and meta-analysis. Antimicrob Resist Infect Control. 2023;12(1):142. doi: 10.1186/s13756-023-01346-5, PMID 38062531

2. Awoke T, Teka B, Seman A, Sebre S, Yeshitela B, Aseffa A, et al. High prevalence of multidrug-resistant Klebsiella pneumoniae in a tertiary care hospital in Ethiopia. Antibiotics (Basel). 2021;10(8):1007. doi: 10.3390/antibiotics10081007, PMID 34439057

3. Nguyen TN, Nguyen PL, Le NT, Nguyen LP, Duong TB, Ho ND, et al. Emerging carbapenem-resistant Klebsiella pneumoniae sequence type 16 causing multiple outbreaks in a tertiary hospital in southern Vietnam. Microb Genomics. 2021;7(3):mgen000519. doi: 10.1099/ mgen.0.000519, PMID 33565955

4. Bhaskar BH, Mulki SS, Joshi S, Adhikary R, Venkatesh BM. Molecular Characterization of extended spectrum β -lactamase and carbapenemase Producing Klebsiella pneumoniae from a Tertiary Care Hospital. Indian J Crit Care Med. 2019;23(2):61-6. doi: 10.5005/jp-journals-10071-23118, PMID 31086448

5. Mustafai MM, Hafeez M, Munawar S, Basha S, Rabaan AA, Halwani MA, et al. Prevalence of carbapenemase and extended-spectrum β-lactamase producing enterobacteriaceae: A cross-sectional study. Antibiotics (Basel). 2023;12(1):148. doi: 10.3390/ antibiotics12010148, PMID 36671350

6. Machado E, Costa P, Carvalho A, On Behalf of The Sarel Investigators. Occurrence of healthcare-associated infections (HAIs) by Escherichia coli and Klebsiella spp. producing Extended-Spectrum β-lactamases (ESBL) and/or carbapenemases in portuguese long-term care facilities. Pathogens. 2022;11(9):1019. doi: 10.3390/pathogens11091019, PMID 36145451

7. Idrees MM, Saeed A. Genetic and molecular mechanisms of multidrug-resistance in uropathogens and novel therapeutic combat. In: Ahmed S, Chandra Ojha S, Najam-ul-Haq M, editors. Biochemistry of Drug Resistance. Cham: Springer International Publishing; 2021. p. 505-38. doi: 10.1007/978-3-030-76320-6_20

8. Odewale G, Jibola-Shittu MY, Ojurongbe O, Olowe RA, Olowe OA. Genotypic determination of extended spectrum β-lactamases and carbapenemase production in clinical isolates of Klebsiella pneumoniae in Southwest Nigeria. Infect Dis Rep. 2023;15(3):339-53. doi: 10.3390/ idr15030034, PMID 37367193

9. Di Pilato V, Pollini S, Miriagou V, Rossolini GM, D’Andrea MM. Carbapenem-resistant Klebsiella pneumoniae: The role of plasmids in emergence, dissemination, and evolution of a major clinical challenge. Expert Rev Anti Infect Ther. 2024;22(1-3):25-43. doi: 10.1080/14787210.2024.2305854, PMID 38236906

10. Karampatakis T, Tsergouli K, Behzadi P. Carbapenem-resistant Klebsiella pneumoniae: Virulence factors, molecular epidemiology and latest updates in treatment options. Antibiotics (Basel). 2023;12(2):234. doi: 10.3390/antibiotics12020234, PMID 36830145

11. Neelambike Sumana M, Maheshwarappa YD, Kalyani G, Mahale RP, Sowmya GS, Raghavendra Rao M, et al. A retrospective study of the antimicrobial susceptibility patterns of Klebsiella pneumoniae isolated from urine samples over a decade in South India. Front Microbiol. 2025;16:1553943. doi: 10.3389/fmicb.2025.1553943, PMID 40600137

12. Nordmann P, Naas T, Poirel L. Global spread of carbapenemase-producing enterobacteriaceae. Emerg Infect Dis. 2011;17(10):1791-8. doi: 10.3201/eid1710.110655, PMID 22000347

13. Kumar H, Kaur N, Kumar N, Chauhan J, Bala R, Chauhan S. Achieving pre-eminence of antimicrobial resistance among non-fermenting Gram-negative bacilli causing septicemia in intensive care units: A single center study of a tertiary care hospital. Germs. 2023;13(2):108-20. doi: 10.18683/germs.2023.1374, PMID 38144242

14. CLSI. Performance Standards for Antimicrobial Susceptibility Testing. 32nd ed. CLSI Supplement M100. Wayne: Clinical and Laboratory Standards Institute; 2022.

15. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268-81. doi: 10.1111/j.1469-0691.2011.03570.x, PMID 21793988

16. Hassan MI, Alkharsah KR, Alzahrani AJ, Obeid OE, Khamis AH, Diab A. Detection of extended spectrum beta-lactamases-producing isolates and effect of AmpC overlapping. J Infect Dev Ctries. 2013;7(8):618-29. doi: 10.3855/jidc.2919, PMID 23949298

17. Booq RY, Abutarboush MH, Alolayan MA, Huraysi AA, Alotaibi AN, Alturki MI, et al. Identification and characterization of plasmids and genes from carbapenemase-producing Klebsiella pneumoniae in Makkah Province, Saudi Arabia. Antibiotics (Basel). 2022;11(11):1627. doi: 10.3390/antibiotics11111627, PMID 36421271

18. Mohammadpour D, Memar MY, Leylabadlo HE, Ghotaslou A, Ghotaslou R. Carbapenem-Resistant Klebsiella pneumoniae: A comprehensive review of phenotypic and genotypic methods for detection. Microbe. 2025;6:100246. doi: 10.1016/j.microb.2025.100246

19. Sahoo S, Mohanty J, Routray S, Sarangi A, Nayak D, Shah S, et al. Prevalence of multidrug-resistant Klebsiella pneumoniae in urinary tract infections: A retrospective observational study in eastern India. Microbes Infect Dis. 2024;6:299-307. doi: 10.21608/ mid.2024.276619.1844

20. Pitout JD, Nordmann P, Poirel L. Carbapenemase-producing Klebsiella pneumoniae, a key pathogen set for global nosocomial dominance. Antimicrob Agents Chemother. 2015;59(10):5873-84. doi: 10.1128/ AAC.01019-15, PMID 26169401

21. Navon-Venezia S, Kondratyeva K, Carattoli A. Klebsiella pneumoniae: A major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol Rev. 2017;41(3):252-75. doi: 10.1093/femsre/fux013, PMID 28521338

22. Rizvi M, Khan N, Fatima A, Bushra R, Zehra A, Saeed F, et al. The microbiological characteristics and genomic surveillance of carbapenem-resistant Klebsiella pneumoniae isolated from clinical samples. Microorganisms. 2025;13(7):1577. doi: 10.3390/ microorganisms13071577, PMID 40732086

23. Ilyas R, Asghar S, Zehra M, Usmani Y, Khan RM, Mirani ZA, et al. Molecular assessment of carbapenem-resistant and ESBL Klebsiella pneumoniae clinical isolates to decipher the correlation of antimicrobial resistance with virulence traits. Infect Genet Evol. 2025;133:105785. doi: 10.1016/j.meegid.2025.105785, PMID 40527416

24. Lagha R, Ben Abdallah F, ALKhammash AA, Amor N, Hassan MM, Mabrouk I, et al. Molecular characterization of multidrug resistant Klebsiella pneumoniae clinical isolates recovered from King Abdulaziz specialist hospital at Taif City, Saudi Arabia. J Infect Public Health. 2021;14(1):143-51. doi: 10.1016/j.jiph.2020.12.001, PMID 33412373

25. Mirzaie A, Ranjbar R. Antibiotic resistance, virulence-associated genes analysis and molecular typing of Klebsiella pneumoniae strains recovered from clinical samples. AMB Express. 2021;11(1):122. doi: 10.1186/s13568-021-01282-w, PMID 34460016

26. Teklu DS, Negeri AA, Legese MH, Bedada TL, Woldemariam HK, Tullu KD. Extended-spectrum beta-lactamase production and multi-drug resistance among Enterobacteriaceae isolated in Addis Ababa, Ethiopia. Antimicrob Resist Infect Control. 2019;8:39. doi: 10.1186/ s13756-019-0488-4, PMID 30815254

27. Moges F, Eshetie S, Abebe W, Mekonnen F, Dagnew M, Endale A, et al. High prevalence of extended-spectrum beta-lactamase-producing Gram-negative pathogens from patients attending Felege Hiwot Comprehensive Specialized Hospital, Bahir Dar, Amhara region. PLoS One. 2019;14(4):e0215177. doi: 10.1371/journal.pone.0215177, PMID 30986262

28. Taha MS, Hagras MM, Shalaby MM, Zamzam YA, Elkolaly RM, Abdelwahab MA, et al. Genotypic characterization of carbapenem-resistant Klebsiella pneumoniae isolated from an Egyptian University Hospital. Pathogens. 2023;12(1):121. doi: 10.3390/pathogens12010121, PMID 36678469

29. Kuchibiro T, Komatsu M, Yamasaki K, Nakamura T, Nishio H, Nishi I, et al. Evaluation of the modified carbapenem inactivation method for the detection of carbapenemase-producing Enterobacteriaceae. J Infect Chemother. 2018;24(4):262-6. doi: 10.1016/j.jiac.2017.11.010, PMID 29248418

30. Song W, Kim HS, Kim JS, Kim HS, Shin DH, Shin S, et al. Carbapenem inactivation method: accurate detection and easy interpretation of carbapenemase production in Enterobacteriaceae and Pseudomonasspp. Ann. Ann Clin Microbiol. 2016;19(4):83. doi: 10.5145/ ACM.2016.19.4.83

31. Sharif MR, Soltani B, Moravveji A, Erami M, Soltani N. Prevalence and risk factors associated with extended spectrum beta lactamase producing Escherichia coli and Klebsiella pneumoniae Isolates in Hospitalized Patients in Kashan (Iran). Electron Physician. 2016;8(3):2081-7. doi: 10.19082/2081, PMID 27123215

32. Shaikh S, Fatima J, Shakil S, Rizvi SM, Kamal MA. Risk factors for acquisition of extended spectrum beta lactamase producing Escherichia coli and Klebsiella pneumoniae in North-Indian hospitals. Saudi J Biol Sci. 2015;22(1):37-41. doi: 10.1016/j.sjbs.2014.05.006, PMID 25561881

33. Legese MH, Weldearegay GM, Asrat D. Extended-spectrum beta-lactamase- and carbapenemase-producing Enterobacteriaceae among Ethiopian children. Infect Drug Resist. 2017;10:27-34. doi: 10.2147/ IDR.S127177, PMID 28182124

34. Eshetie S, Unakal C, Gelaw A, Ayelign B, Endris M, Moges F. Multidrug resistant and carbapenemase producing Enterobacteriaceae among patients with urinary tract infection at referral Hospital, Northwest Ethiopia. Antimicrob Resist Infect Control. 2015;4:12. doi: 10.1186/ s13756-015-0054-7, PMID 25908966

35. Ouedraogo AS, Sanou M, Kissou A, Sanou S, Solaré H, Kaboré F, et al. High prevalence of extended-spectrum β-lactamase producing Enterobacteriaceae among clinical isolates in Burkina Faso. BMC Infect Dis. 2016;16:326. doi: 10.1186/s12879-016-1655-3, PMID 27400864

36. Desai D, Misra RN, Das NK, Gandham NR, Vyawhare CR, Mirza S. Prevalence of extended spectrum β-lactamases Klebsiella pneumoniae in various clinical samples and characterization of the bla Genes in a tertiary care hospital of Western Maharashtra. Med J Dr Patil Vidyapeeth. 2023;16(3):398-402. doi: 10.4103/mjdrdypu.mjdrdypu_286_22

37. Maleki N, Tahanasab Z, Mobasherizadeh S, Rezaei A, Faghri J. Prevalence of CTX-M and TEM β-lactamases in Klebsiella pneumoniae isolates from patients with urinary tract infection, Al-Zahra Hospital, Isfahan, Iran. Adv Biomed Res. 2018;7:10. doi: 10.4103/abr.abr_17_17, PMID 29456981

38. Bora A, Hazarika NK, Shukla SK, Prasad KN, Sarma JB, Ahmed G. Prevalence of TEM, blaSHV and CTX-M genes in clinical isolates of Escherichia coli and Klebsiella pneumoniae from Northeast India. Indian J Pathol Microbiol. 2014;57(2):249-54. doi: 10.4103/0377- 4929.134698, PMID 24943758

39. Hassan H, Abdalhamid B. Molecular characterization of extended-spectrum beta-lactamase producing Enterobacteriaceae in a Saudi Arabian tertiary hospital. J Infect Dev Ctries. 2014;8(3):282-8. doi: 10.3855/jidc.3809, PMID 24619257

40. Oteo J, Saez D, Bautista V, Fernández-Romero S, Hernández- Molina JM, Pérez-Vázquez M, et al. Carbapenemase-producing Enterobacteriaceae in Spain in 2012. Antimicrob Agents Chemother. 2013;57(12):6344-7. doi: 10.1128/AAC.01513-13, PMID 24041898

41. Veeraraghavan B, Shankar C, Karunasree S, Kumari S, Ravi R, Ralph R. Carbapenem resistant Klebsiella pneumoniae isolated from bloodstream infection: Indian experience. Pathog Glob Health 2017;111:240-6. https://doi.org/10.1080/20477724.2017.1340128.

42. Raheel A, Azab H, Hessam W, Abbadi S, Ezzat A. Detection of carbapenemase enzymes and genes among carbapenem-resistant Enterobacteriaceae isolates in Suez Canal University Hospitals in Ismailia, Egypt. Microbes Infect Dis. 2020;1(1):24-33. doi: 10.21608/ mid.2020.25702.1007

43. Deshpande P, Rodrigues C, Shetty A, Kapadia F, Hedge A, Soman R. New Delhi Metallo-beta lactamase (NDM-1) in Enterobacteriaceae: Treatment options with carbapenems compromised. J Assoc Physicians India. 2010;58:147-9. PMID 20848811

44. Sisay A, Kumie G, Gashaw Y, Nigatie M, Gebray HM, Reta MA. Prevalence of genes encoding carbapenem-resistance in Klebsiella pneumoniae recovered from clinical samples in Africa: Systematic review and meta-analysis. BMC Infect Dis. 2025;25(1):556. doi: 10.1186/s12879-025-10959-7, PMID 40251495

45. Tula MY, Enabulele OI, Ophori EA, Aziegbemhin AS, Iyoha O, Filgona J. A systematic review of the current status of carbapenem resistance in Nigeria: Its public health implication for national intervention. Niger Postgrad Med J. 2023;30(1):1-11. doi: 10.4103/ npmj.npmj_240_22, PMID 36814157

46. Abbasi E, Ghaznavi-Rad E. High frequency of NDM-1 and OXA-48 carbapenemase genes among Klebsiella pneumoniae isolates in central Iran. BMC Microbiol. 2023;23(1):98. doi: 10.1186/s12866-023- 02840-x, PMID 37038144

47. Liu Z, Gu Y, Li X, Liu Y, Ye Y, Guan S, et al. Identification and characterization of NDM-1-producing hypervirulent (hypermucoviscous) Klebsiella pneumoniae in china. Ann Lab Med. 2019;39(2):167-75. doi: 10.3343/alm.2019.39.2.167, PMID 30430779

48. Tanriverdi Cayci Y, Biyik I, Korkmaz F, Birinci A. Investigation of NDM, VIM, KPC and OXA-48 genes, blue-carba and CIM in carbapenem resistant Enterobacterales isolates. J Infect Dev Ctries. 2021;15(5):696-703. doi: 10.3855/jidc.13345, PMID 34106894

Published

07-12-2025

How to Cite

ROHIT KUMAR, et al. “PHENOTYPIC AND GENOTYPIC CHARACTERIZATION OF MULTIDRUG-RESISTANT KLEBSIELLA PNEUMONIAE PRODUCING EXTENDED-SPECTRUM Β-LACTAMASE AND CARBAPENEMASE”. Asian Journal of Pharmaceutical and Clinical Research, vol. 18, no. 12, Dec. 2025, pp. 199-07, doi:10.22159/ajpcr.2025v18i12.57172.

Issue

Section

Original Article(s)