ADVANCES IN ANALYTICAL TECHNIQUES FOR TOMATO SEED OIL: GC-MS QUANTIFICATION AND SIMPLIFIED PUFA ANALYSIS

Authors

  • REVATHI H Department of Pharmacy, Dr. A.P.J Abdul Kalam University, Indore, Madhya Pradesh, India.
  • REVATHI A GUPTA Department of Pharmacy, Faculty of Pharmacy, Dr. A.P.J Abdul Kalam University, Indore, Madhya Pradesh, India.

DOI:

https://doi.org/10.22159/ajpcr.2025v18i12.57196

Keywords:

Tomato seed oil, Gas chromatography-mass spectrometry, Fatty acid methyl esters, Polyunsaturated fatty acids, Streamlined analytical approach

Abstract

Objectives: The objective of this study was to delineate the fatty-acid profile of tomato seed oil (TSO) and assess the analytical efficacy of a streamlined one-step extraction-methylation approach in comparison to the traditional Folch protocol utilizing gas chromatography-mass spectrometry (GC-MS).

Methods: TSO was extracted, transformed into fatty-acid methyl esters, and analyzed by GC-MS. The method validation encompassed linearity, precision, recovery, limits of detection (LOD), limits of quantification (LOQ), and statistical comparison by paired t-test and Bland-Altman analysis.

Results and Discussion: Linoleic acid (48.16%), palmitic acid (17.22%), and oleic acid (9.18%) were recognized as the predominant fatty acids. Calibration demonstrated exceptional linearity (R2≥0.9999), with precision (%relative standard deviation≤5%) and recovery (95–105%) validating accuracy. The LOD ranged from 0.012 to 0.018 mg/mL, while the LOQ spanned from 0.036 to 0.054 mg/mL, demonstrating elevated sensitivity. No notable discrepancies were seen between the approaches (p>0.05), and Bland-Altman plots indicated robust agreement.

Conclusion: TSO is an oil abundant in polyunsaturated fatty acids, and the streamlined method provides a swift, precise, and sustainable alternative for regular fatty acid profiling.

Downloads

Download data is not yet available.

References

1. Abidin SZ, Patel D, Saha B. Quantitative analysis of fatty acids composition in the used cooking oil (UCO) by gas chromatography-mass spectrometry (GC-MS). Can J Chem Eng. 2013;91(12):1896-903. doi: 10.1002/cjce.21848

2. Arbex AK, Bizarro VR, Santos JC, Araújo LM, De Jesus AL, Fernandes MS, et al. The impact of the essential fatty acids (EFA) in human health. Open J Endocr Metab Dis. 2015;5(7):98-104. doi: 10.4236/ojemd.2015.57013

3. Bratu A, Mihalache M, Hanganu A, Chira NA, Todaşcă MC, Roşca S. Quantitative determination of fatty acids from fish oils using GC-MS method and 1H-NMR spectroscopy. UPB Sci Bull Ser B. 2013;75(2):23-32.

4. Brenna JT. Fatty acid analysis by high resolution gas chromatography and mass spectrometry for clinical and experimental applications. Curr Opin Clin Nutr Metab Care. 2013;16(5):548-54. doi: 10.1097/ mco.0b013e328363bc0a, PMID 23892505

5. Chiu HH, Kuo CH. Gas chromatography-mass spectrometry-based analytical strategies for fatty acid analysis in biological samples. J Food Drug Anal. 2019;28(1):60-73. doi: 10.1016/j.jfda.2019.10.003, PMID 31883609

6. Cui Y, Chen X, Liu L, Xie W, Wu Y, Wu Q, et al. Gas chromatography-mass spectrometry analysis of the free fatty acids in serum obtained from patients with Alzheimer’s disease. Biomed Mater Eng. 2015;26 Suppl 1:S2165-77. doi: 10.3233/bme-151522, PMID 26405996

7. Tilay A, Annapure U. Novel simplified and rapid method for screening and isolation of polyunsaturated fatty acids producing marine bacteria. Biotechnol Res Int. 2012;2012:542721. doi: 10.1155/2012/542721, PMID 22934188

8. Evlogieva M, Danalev D, Tanev D, Vezenkov L, Damianova B. Investigation of fatty acids composition in food additives using gas chromatography-mass spectrometry. J Chem Technol Metall. 2010;45(1):87-92.

9. Gómez-Brandón M, Lores M, Domínguez J. Comparison of extraction and derivatization methods for fatty acid analysis in solid environmental matrixes. Anal Bioanal Chem. 2008;392(3):505-14. doi: 10.1007/ s00216-008-2274-7, PMID 18651136

10. Jayasinghe NS, Dias DA. A robust GC-MS method for the quantitation of fatty acids in biological systems. Methods Mol Biol. 2013;1055:39-56. doi: 10.1007/978-1-62703-577-4_4, PMID 23963902

11. Ling XP, Guo J, Zheng C, Ye C, Lu Y, Pan X, et al. Simple, effective protein extraction method and proteomics analysis from polyunsaturated fatty acids-producing micro-organisms. Bioprocess Biosyst Eng. 2015;38(12):2331-41. doi: 10.1007/s00449-015-1467-7, PMID 26391510

12. Martínez B, Miranda JM, Franco CM, Cepeda A, Rodríguez JL. Development of a simple method for the quantitative determination of fatty acids in milk with special emphasis on long-chain fatty acids. CyTA J Food. 2012;10(1):27-35. doi: 10.1080/19476337.2010.538860

13. Johnston MR, Sobhi HF. Advances in fatty acid analysis for clinical investigation and diagnosis using GC/MS methodology. J Biochem Analyt Stud. 2018;3(1):1-6. doi: 10.16966/2576-5833.111

14. Rathore P, Daniel K, Daniel V, Singh C, Yashwant GA, Gupta AK. Estimation of active components in Gokshura tablet and Pushyanug churna formulation using high-performance thin layer chromatography method. Int J Drug Deliv Technol. 2022;12(4):1507-12. doi: 10.25258/ ijddt.12.4.04

15. Özogul Y, Ucar Y, Takadaş F, Durmuş M, Köşker AR, Polat A. Comparision of green and conventional extraction methods on lipidyield and fatty acid profiles of fish species. Eur J Lipid Sci Technol. 2018;120(12):1800107. doi: 10.1002/ejlt.201800107

16. Quehenberger O, Armando AM, Dennis EA. High sensitivity quantitative lipidomics analysis of fatty acids in biological samples by gas chromatography-mass spectrometry. Biochim Biophys Acta. 2011;1811(11):648-56. doi: 10.1016/j.bbalip.2011.07.006, PMID 21787881

17. Ren J, Mozurkewich EL, Sen A, Vahratian AM, Ferreri TG, Morse AN, et al. Total serum fatty acid analysis by GC-MS: Assay validation and serum sample stability. Curr Pharm Anal. 2013;9(4):331-9. doi: 10.2174/1573412911309040002, PMID 25110470

18. Rodrigues RO, Costa H, Lima RA, Amaral JS. Simple methodology for the quantitative analysis of fatty acids in human red blood cells. Chromatographia. 2015;78(19-20):1271-81. doi: 10.1007/ s10337-015-2947-2

19. Martha R, Despal R, Toharmat T, Rofiah N, Anggraeni D. Comparison of extraction methods for fatty acid and conjugated linoleic acid quantification in milk. IOP Conf Ser Mater Sci Eng. 2019;546(4):042022. doi: 10.1088/1757-899x/546/4/042022

20. Vongsvivut J, Miller MR, McNaughton D, Heraud P, Barrow CJ. Rapid discrimination and determination of polyunsaturated fatty acid composition in marine oils by FTIR spectroscopy and multivariate data analysis. Food Bioprocess Technol. 2014;7(8):2410-22. doi: 10.1007/ s11947-013-1251-0

21. Vasudev S, Yadava D, Malik D, Tanwar R, Prabhu K. A simplified method for preparation of fatty acid methyl esters of Brassica oil. Czech J Genet Plant Breed. 2008;68(4):456-8.

22. Wei GL, Zeng EY. Gas chromatography-mass spectrometry and high-performance liquid chromatography-tandem mass spectrometry in quantifying fatty acids. Trends Anal Chem. 2011;30(9):1429-36. doi: 10.1016/j.trac.2011.05.005

23. Wu Z, Zhang Q, Li N, Pu Y, Wang B, Zhang T. Comparison of critical methods developed for fatty acid analysis: A review. J Sep Sci. 2016;40(1):288-98. doi: 10.1002/jssc.201600707, PMID 27471181

Published

07-12-2025

How to Cite

REVATHI H, and REVATHI A GUPTA. “ADVANCES IN ANALYTICAL TECHNIQUES FOR TOMATO SEED OIL: GC-MS QUANTIFICATION AND SIMPLIFIED PUFA ANALYSIS”. Asian Journal of Pharmaceutical and Clinical Research, vol. 18, no. 12, Dec. 2025, pp. 94-99, doi:10.22159/ajpcr.2025v18i12.57196.

Issue

Section

Original Article(s)