VITAMIN D–VITAMIN D RECEPTOR AXIS IN BREAST CANCER: MECHANISMS, EVIDENCE, AND CLINICAL IMPLICATIONS

Authors

  • VEMURI HELENA Central Research Laboratory, Meenakshi Medical College Hospital and Research Institute, Meenakshi Academy of Higher Education and Research, Kanchipuram, Tamil Nadu, India.
  • ARUMUGAM SURESH Central Research Laboratory, Meenakshi Medical College Hospital and Research Institute, Meenakshi Academy of Higher Education and Research, Kanchipuram, Tamil Nadu, India.
  • KUPPUSAMY BASKARAN Central Research Laboratory, Meenakshi Medical College Hospital and Research Institute, Meenakshi Academy of Higher Education and Research, Kanchipuram, Tamil Nadu, India.
  • NATRAJAN MUNINATHAN Central Research Laboratory, Meenakshi Medical College Hospital and Research Institute, Meenakshi Academy of Higher Education and Research, Kanchipuram, Tamil Nadu, India.

DOI:

https://doi.org/10.22159/ajpcr.2025v18i12.57515

Keywords:

Vitamin D,, Vitamin D receptor, Breast cancer, Tumor subtypes, Prognosis, Adjuvant therapy

Abstract

The Vitamin D-Vitamin D receptor (VDR) axis is biologically important in breast cancer because breast tissue can locally activate and break down Vitamin D, allowing direct control of cell growth, death, DNA repair, and the tumor microenvironment. In many breast cancers, this system is disturbed, with reduced effective VDR signaling and altered Vitamin D-metabolizing enzymes, changes that tend to appear in more aggressive disease. Experimental studies show that activating VDR can slow proliferation, limit stem-like behavior, reduce invasion and metastasis, and help maintain genomic stability and balanced immune responses. Human data generally link low blood Vitamin D levels and a disrupted VDR pathway with higher breast cancer risk and poorer outcomes, especially in hormone receptor-positive and some triple-negative or BRCA1-related tumors, although these patterns are weakened by lifestyle confounding and mostly neutral prevention trials. At present, the most realistic clinical use is routine testing and correction of Vitamin D deficiency, mainly for bone and general health, with any anticancer benefit framed as possible but unproven. Future work should focus on biomarker-guided, subtype-specific trials that combine Vitamin D-based approaches with endocrine, cytotoxic, or other targeted therapies, positioning the Vitamin D-VDR axis as a precision co-modulator rather than a stand-alone treatment.

Downloads

Download data is not yet available.

References

1. Filip-Psurska B, Zachary H, Strzykalska A, Wietrzyk J. Vitamin D, Th17 lymphocytes, and breast cancer. Cancers (Basel). 2022 Jan;14(15):3649.

2. Carlberg C, Muñoz A. An update on vitamin D signaling and cancer. Semin Cancer Biol. 2022 Feb 1;79:217-30.

3. Campbell MJ, Trump DL. Vitamin D receptor signaling and cancer. Endocrinol Metab Clin North Am. 2017 Dec;46(4):1009-38.

4. Guo Q, Chen Y, Zhou Q, Dong D, Huang S, Shan M, et al. The vitamin D3 axis in laryngeal cancer: A double-edged sword modulated by estrogen signaling. Front Immunol. 2025 Oct 30;16:1688589.

5. Norlin M, Wikvall K. Enzymatic activation in vitamin D signaling - past, present and future. Arch Biochem Biophys. 2023 Jul 1;742:109639.

6. Kowalczyk W, Waliszczak G, Jach R, Dulińska-Litewka J. Steroid receptors in breast cancer: Understanding of molecular function as a basis for effective therapy development. Cancers. 2021 Jan;13(19):4779.

7. Bikle DD. Extraskeletal actions of vitamin D. Ann N Y Acad Sci. 2016 Jul;1376(1):29-52.

8. Townsend K, Banwell CM, Guy M, Colston KW, Mansi JL, Stewart PM, et al. Autocrine metabolism of vitamin D in normal and malignant breast tissue. Clin Cancer Res. 2005 May 1;11(9):3579-86.

9. McCarthy K, Laban C, Bustin SA, Ogunkolade W, Khalaf S, Carpenter R, et al. Expression of 25-hydroxyvitamin D-1-α- hydroxylase, and vitamin D receptor mRNA in normal and malignant breast tissue. Anticancer Res. 2009;29(1):155-7.

10. Lopes N, Sousa B, Martins D, Gomes M, Vieira D, Veronese LA, et al. Alterations in vitamin D signalling and metabolic pathways in breast cancer progression: A study of VDR, CYP27B1 and CYP24A1 expression in benign and malignant breast lesions. BMC Cancer. 2010 Sep 11;10:483.

11. Dong LM, Ulrich CM, Hsu L, Duggan DJ, Benitez DS, White E, et al. Vitamin D related genes, CYP24A1 and CYP27B1, and colon cancer risk. Cancer Epidemiol Biomarkers Prev. 2009 Sep;18(9):2540-8.

12. Johnson AL, Zinser GM, Waltz SE. Vitamin D3-dependent VDR signaling delays ron-mediated breast tumorigenesis through suppression of β-catenin activity. Oncotarget. 2015 Jun 30;6(18):16304-20.

13. Jeon SM, Shin EA. Exploring vitamin D metabolism and function in cancer. Exp Mol Med. 2018 Apr;50(4):1-14.

14. Graziano S, Johnston R, Deng O, Zhang J, Gonzalo S. Vitamin D/ vitamin D receptor axis regulates DNA repair during oncogene-induced senescence. Oncogene. 2016 Oct 13;35(41):5362-76.

15. Zhang X, Yu X. Crosstalk between Wnt/β-catenin signaling pathway and DNA damage response in cancer: A new direction for overcoming therapy resistance. Front Pharmacol. 2023 Aug 2;14:1230822.

16. Xue W, Yang L, Chen C, Ashrafizadeh M, Tian Y, Sun R. Wnt/β- catenin-driven EMT regulation in human cancers. Cell Mol Life Sci. 2024 Feb 9;81(1):79.

17. Vink-Van Wijngaarden T, Pols HA, Buurman CJ, Van den Bemd GJ, Dorssers LC, Birkenhäger JC, et al. Inhibition of breast cancer cell

growth by combined treatment with vitamin D3 analogues and tamoxifen. Cancer Res. 1994 Nov 1;54(21):5711-7.

18. Thakkar A, Wang B, Picon-Ruiz M, Buchwald P, Ince TA. Vitamin D and androgen receptor-targeted therapy for triple-negative breast cancer. Breast Cancer Res Treat. 2016 May;157(1):77-90.

19. Zheng W, Duan B, Zhang Q, Ouyang L, Peng W, Qian F, et al. Vitamin D-induced vitamin D receptor expression induces tamoxifen sensitivity in MCF-7 stem cells via suppression of Wnt/β-catenin signaling. Biosci Rep. 2018 Dec 21;38(6):BSR20180595.

20. Negri M, Gentile A, De Angelis C, Montò T, Patalano R, Colao A, et al. Vitamin D-induced molecular mechanisms to potentiate cancer therapy and to reverse drug-resistance in cancer cells. Nutrients. 2020;12(6):1798.

21. Reimers LL, Crew KD, Bradshaw PT, Santella RM, Steck SE, Sirosh I, et al. Vitamin D-related gene polymorphisms, plasma 25-hydroxyvitamin D, and breast cancer risk. Cancer Causes Control. 2015 Feb;26(2):187-203.

22. Pickholtz I, Saadyan S, Keshet GI, Wang VS, Cohen R, Bouwman P, et al. Cooperation between BRCA1 and vitamin D is critical for histone acetylation of the p21WAF1 promoter and for growth inhibition of breast cancer cells and cancer stem-like cells. Oncotarget. 2014 Dec 15;5(23):11827-46.

23. Okunola AO, Baatjes KJ, Zemlin AE, Torrorey-Sawe R, Conradie M, Kidd M, et al. Pathology-supported genetic testing for the application of breast cancer pharmacodiagnostics: Family counselling, lifestyle adjustments and change of medication. Expert Rev Mol Diagn. 2023 May 4;23(5):431-43.

24. Li J, Luco AL, Camirand A, St-Arnaud R, Kremer R. Vitamin D regulates CXCL12/CXCR4 and epithelial-to-mesenchymal transition in a model of breast cancer metastasis to lung. Endocrinology. 2021 Jul 1;162(7):bqab049.

25. Zhang YG, Xia Y, Zhang J, Deb S, Garrett S, Sun J. Intestinal vitamin D receptor protects against extraintestinal breast cancer tumorigenesis. Gut Microbes. 2023 Dec 31;15(1):2202593.

26. De Sire A, Gallelli L, Marotta N, Lippi L, Fusco N, Calafiore D, et al. Vitamin D deficiency in women with breast cancer: A correlation with osteoporosis? A machine learning approach with multiple factor analysis. Nutrients. 2022 Apr 11;14(8):1586.

27. Ottaiano A, Facchini BA, Iacovino M, Santorsola M, Facchini S, Di Mauro G, et al. Impact of vitamin D levels on progression-free survival and response to neoadjuvant chemotherapy in breast cancer patients: A systematic review and meta-analysis. Cancers (Basel). 2024 Dec 17;16(24):4206.

28. Nogues X, Servitja S, Peña MJ, Prieto-Alhambra D, Nadal R, Mellibovsky L, et al. Vitamin D deficiency and bone mineral density in postmenopausal women receiving aromatase inhibitors for early breast cancer. Maturitas. 2010 Jul;66(3):291-7.

29. Vanhevel J, Verlinden L, Doms S, Wildiers H, Verstuyf A. The role of vitamin D in breast cancer risk and progression. Endocr-Relat Cancer. 2022 Feb 1;29(2):R33-55. doi: 10.1530/ERC-21-0182, PMID 34935629

30. Torres A, Cameselle C, Otero P, Simal-Gandara J. The impact of vitamin D and its dietary supplementation in breast cancer prevention: An integrative review. Nutrients. 2024 Feb 20;16(5):573.

31. De La Puente-Yagüe M, Cuadrado-Cenzual MA, Ciudad-Cabañas MJ, Hernández-Cabria M, Collado-Yurrita L. Vitamin D: And its role in breast cancer. Kaohsiung J Med Sci. 2018 Aug;34(8):423-7.

32. Shao T, Klein P, Grossbard ML. Vitamin D and breast cancer. Oncologist. 2012 Jan 1;17(1):36-45.

33. Danza K, Porcelli L, De Summa S, Di Fonte R, Pilato B, Lacalamita R, et al. The ERRα-VDR axis promotes calcitriol degradation and estrogen signaling in breast cancer cells, while VDR-CYP24A1-ERRα overexpression correlates with poor prognosis in patients with basal-like breast cancer. Mol Oncol. 2022 Feb;16(4):904-20.

34. Voutsadakis IA. Vitamin D receptor (VDR) and metabolizing enzymes CYP27B1 and CYP24A1 in breast cancer. Mol Biol Rep. 2020 Dec;47(12):9821-30.

35. Marik R, Fackler M, Gabrielson E, Zeiger MA, Sukumar S, Stearns V, et al. DNA methylation-related vitamin D receptor insensitivity in breast cancer. Cancer Biol Ther. 2010 Jul;10(1):44-53.

36. Thorne J, Campbell MJ. The vitamin D receptor in cancer. Proc Nutr Soc. 2008 May;67(2):115-27.

37. Hossain S, Liu Z, Wood RJ. Histone deacetylase activity and vitamin D-dependent gene expressions in relation to sulforaphane in human breast cancer cells. J Food Biochem. 2020 Feb;44(2):e13114.

38. Welsh J. Vitamin D and breast cancer: Mechanistic update. JBMR Plus. 2021 Dec;5(12):e10582.

39. Colston KW, Lowe LC, Mansi JL, Campbell MJ. Vitamin D status and breast cancer risk. Anticancer Res. 2006;26(4A):2573-80.

40. Carlberg C. Genomic signaling of vitamin D. Steroids. 2023;198:109271.

41. Yao M, Oduro PK, Akintibu AM, Yan H. Modulation of the vitamin D receptor by traditional Chinese medicines and bioactive compounds: Potential therapeutic applications in VDR-dependent diseases. Front Pharmacol. 2024 Jan 22;15:1298181.

42. Carlberg C, Campbell MJ. Vitamin D receptor signaling mechanisms: Integrated actions of a well-defined transcription factor. Steroids. 2013 Feb;78(2):127-36.

43. Mianesaz H, Göczi L, Nagy G, Póliska S, Fadel L, Bojcsuk D, et al. Genomic regions occupied by both RARα and VDR are involved in the convergence and cooperation of retinoid and vitamin D signaling pathways. Nucleic Acids Res. 2025 Apr 11;53(6):gkaf230.

44. Lin R. Crosstalk between vitamin D metabolism, VDR signalling, and innate immunity. BioMed Res Int. 2016;2016(1):1375858.

45. Khammissa RA, Fourie J, Motswaledi MH, Ballyram R, Lemmer J, Feller L. The biological activities of vitamin D and its receptor in relation to calcium and bone homeostasis, cancer, immune and cardiovascular systems, skin biology, and oral health. BioMed Res Int. 2018 May 22;2018:9276380.

46. Narvaez CJ, Matthews D, LaPorta E, Simmons KM, Beaudin S, Welsh J. The impact of vitamin D in breast cancer: Genomics, pathways, metabolism. Front Physiol. 2014 Jun 13;5:213.

47. Thyer L, Ward E, Smith R, Fiore MG, Magherini S, Branca JJ, et al. A novel role for a major component of the vitamin D axis: Vitamin D binding protein-derived macrophage activating factor induces human breast cancer cell apoptosis through stimulation of macrophages. Nutrients. 2013 Jul 8;5(7):2577-89.

48. Keith ME, LaPorta E, Welsh J. Stable expression of human VDR in murine VDR-null cells recapitulates vitamin D mediated anti-cancer signaling. Mol Carcinog. 2014 Apr;53(4):286-99.

49. Kholghi Oskooei V, Geranpayeh L, Omrani MD, Ghafouri-Fard S. Assessment of functional variants and expression of long noncoding RNAs in vitamin D receptor signaling in breast cancer. Cancer Manag Res. 2018 Sep;10:3451-62.

50. Falzone L, Gattuso G, Candido S, Tomaselli A, Fagone S, Spandidos D, et al. Vitamin D and microRNAs: Role in the pathogenesis and prognosis of breast cancer (Review). Int J Epigen. 2023 Sep 19;3(1):5.

51. Rochel N, Wurtz JM, Mitschler A, Klaholz B, Moras D. The crystal structure of the nuclear receptor for vitamin D bound to its natural ligand. Mol Cell. 2000 Jan 1;5(1):173-9.

52. Issa LL, Leong GM, Eisman JA. Molecular mechanism of vitamin D receptor action. Inflamm Res. 1998 Dec;47(12):451-75.

53. Zenata O, Vrzal R. Fine tuning of vitamin D receptor (VDR) activity by post-transcriptional and post-translational modifications. Oncotarget. 2017 Feb 25;8(21):35390-402.

54. Powała A, Żołek T, Brown G, Kutner A. Structure and the anticancer activity of vitamin D receptor agonists. Int J Mol Sci. 2024 Jan;25(12):6624.

55. Molnár F. Structural considerations of vitamin D signaling. Front Physiol. 2014 Jun 6;5:191.

56. Paulo S. Maria Teresa F. Escaleira and M. Mitzi Brentani. Breast Cancer Research and Treatment. 1999;54(1):123–33.

57. Thabet RH, Gomaa AA, Matalqah LM, Shalaby EM. Vitamin D: An essential adjuvant therapeutic agent in breast cancer. J Int Med Res. 2022 Jul;50(7):3000605221113800.

58. Alimirah F, Peng X, Gupta A, Yuan L, Welsh J, Cleary M, et al. Crosstalk between the vitamin D receptor (VDR) and miR-214 in regulating SuFu, a hedgehog pathway inhibitor in breast cancer cells. Exp Cell Res. 2016 Nov 15;349(1):15-22.

59. Trivedi T, Zheng Y, Fournier PG, Murthy S, John S, Schillo S, et al. The vitamin D receptor is involved in the regulation of human breast cancer cell growth via a ligand-independent function in cytoplasm. Oncotarget. 2017 Mar 1;8(16):26687-701.

60. Singh T, Adams BD. The regulatory role of miRNAs on VDR in breast cancer. Transcription. 2017 Aug 8;8(4):232-41.

61. Alimirah F, Peng X, Yuan L, Mehta RR, Von Knethen A, Choubey D, et al. Crosstalk between the peroxisome proliferator-activated receptor γ (PPARγ) and the vitamin D receptor (VDR) in human breast cancer cells: PPARγ binds to VDR and inhibits. Vol. 1α, 25-dihydroxyvitamin D3 mediated transactivation. Exp Cell Res. 2012;318:2490-7.

62. Cheng M, Olivier P, Diehl JA, Fero M, Roussel MF, Roberts JM, et al. The p21(Cip1) and p27(Kip1) CDK ‘inhibitors’ are essential activators of cyclin D-dependent kinases in murine fibroblasts. EMBO J. 1999 Mar 15;18(6):1571-83.

63. Benard O, Qian X, Liang H, Ren Z, Suyama K, Norton L, et al. P21Cip1

promotes mammary cancer-initiating cells via activation of Wnt/TCF1/ CyclinD1 signaling. Mol Cancer Res. 2019 Jul;17(7):1571-81.

64. Díaz L, Díaz-Muñoz M, García-Gaytán AC, Méndez I. Mechanistic effects of calcitriol in cancer biology. Nutrients. 2015 Jun;7(6):5020-50.

65. Saramäki A, Diermeier S, Kellner R, Laitinen H, Vaïsänen S, Carlberg C. Cyclical chromatin looping and transcription factor association on the regulatory regions of the p21 (CDKN1A) gene in response to 1alpha, 25-dihydroxyvitamin D3. J Biol Chem. 2009 Mar 20;284(12):8073-82.

66. Kim S, Shevde NK, Pike JW. 1, 25-dihydroxyvitamin D3 stimulates cyclic vitamin D receptor/retinoid X receptor DNA-binding, co-activator recruitment, and histone acetylation in intact osteoblasts. J Bone Miner Res. 2005 Feb;20(2):305-17.

67. Barbier C, Mansour A, Ismailova A, Sarmadi F, Scarlata DA, Bouttier M, et al. Molecular mechanisms of bifunctional vitamin D receptor agonist-histone deacetylase inhibitor hybrid molecules in triple-negative breast cancer. Sci Rep. 2022 Apr 25;12(1):6745.

68. Veeresh PK, Basavaraju CG, Dallavalasa S, Anantharaju PG, Natraj SM, Sukocheva OA, et al. Vitamin D3 inhibits the viability of breast cancer cells in vitro and Ehrlich ascites carcinomas in mice by promoting apoptosis and cell cycle arrest and by impeding tumor angiogenesis. Cancers (Basel). 2023 Oct 2;15(19):4833.

69. Zhong W, Gu B, Gu Y, Groome LJ, Sun J, Wang Y. Activation of vitamin D receptor promotes VEGF and CuZn-SOD expression in endothelial cells. J Steroid Biochem Mol Biol. 2014 Mar;140:56-62.

70. Bandera Merchan B, Morcillo S, Martin-Nuñez G, Tinahones FJ, Macías-González M. The role of vitamin D and VDR in carcinogenesis: Through epidemiology and basic sciences. J Steroid Biochem Mol Biol. 2017 Mar 1;167:203-18.

71. Lazzara F, Longo AM, Giurdanella G, Lupo G, Platania CB, Rossi S, et al. Vitamin D3 preserves blood retinal barrier integrity in an in vitro model of diabetic retinopathy. Front Pharmacol. 2022 Aug 26;13:971164.

72. Won HS, Lee KM, Oh JE, Nam EM, Lee KE. Inhibition of β-catenin to overcome endocrine resistance in tamoxifen-resistant breast cancer cell line. PLoS One. 2016;11(5):e0155983.

73. Wanda D, Sandhika W, Sandhika W, Sandhika W. VDR and WNT/β- catenin expression in invasive breast carcinoma of no special type: Role and prognostic value. Pharmacogn J. 2024;16(6):1349-54.

74. Larriba MJ, Ordóñez-Morán P, Chicote I, Martín-Fernández G, Puig I, Muñoz A, et al. Vitamin D receptor deficiency enhances Wnt/β-catenin signaling and tumor burden in colon cancer. PLoS One. 2011;6(8):e23524.

75. Rass E, Willaume S, Bertrand P. 53BP1: Keeping it under control, even at a distance from DNA damage. Genes (Basel). 2022 Dec 16;13(12):2390.

76. Gupta A, Hunt CR, Chakraborty S, Pandita RK, Yordy J, Ramnarain DB, et al. Role of 53BP1 in the regulation of DNA double-strand break repair pathway choice. Radiat Res. 2014 Jan;181(1):1-8.

77. Xu Q, Wang Z, Chen X, Duan W, Lei J, Zong L, et al. Stromal-derived factor-1α/CXCL12-CXCR4 chemotactic pathway promotes perineural invasion in pancreatic cancer. Oncotarget. 2015 Mar 10;6(7):4717-32.

78. Conley-LaComb MK, Semaan L, Singareddy R, Li Y, Heath EI, Kim S, et al. Pharmacological targeting of CXCL12/CXCR4 signaling in prostate cancer bone metastasis. Mol Cancer. 2016;15:68.

79. Goïta AA, Guenot D. Colorectal cancer: The contribution of CXCL12 and its receptors CXCR4 and CXCR7. Cancers (Basel). 2022 Jan;14(7):1810.

80. Zinser GM, McEleney K, Welsh J. Characterization of mammary tumor cell lines from wild type and vitamin D3 receptor knockout mice. Mol Cell Endocrinol. 2003 Feb 28;200(1-2):67-80.

81. Zinser GM, Suckow M, Welsh J. Vitamin D receptor (VDR) ablation alters carcinogen-induced tumorigenesis in mammary gland, epidermis and lymphoid tissues. J Steroid Biochem Mol Biol. 2005 Oct;97(1- 2):153-64.

82. Scarmo S, Afanasyeva Y, Lenner P, Koenig KL, Horst RL, Clendenen TV, et al. Circulating levels of 25-hydroxyvitamin D and risk of breast cancer: A nested case-control study. Breast Cancer Res. 2013;15(1):R15.

83. Visvanathan K, Mondul AM, Zeleniuch-Jacquotte A, Wang M, Gail MH, Yaun SS, et al. Circulating vitamin D and breast cancer risk: An international pooling project of 17 cohorts. Eur J Epidemiol. 2023 Jan;38(1):11-29.

84. Ganji V, Sukik L, Hoque B, Boutefnouchet L, Shi Z. Association of serum 25-hydroxyvitamin D concentration with breast cancer risk in postmenopausal women in the US. J Pers Med. 2022 Jun;12(6):944.

85. Barry EL, Rees JR, Peacock JL, Mott LA, Amos CI, Bostick RM, et al. Genetic variants in CYP2R1, CYP24A1, and VDR modify the efficacy of vitamin D3 supplementation for increasing serum 25-hydroxyvitamin D Levels in a randomized controlled trial. J Clin Endocrinol Metab. 2014 Oct;99(10):E2133-7.

86. Stroia CM, Pallag A, Vrânceanu M, De Lorenzo D, Grimaldi KA, Pallag CR, et al. The association of VDR, CYP2R1, and GC gene polymorphisms, dietary intake, and BMI in regulating vitamin D status. Diseases. 2025 Jul;13(7):219.

87. Holick CN, Stanford JL, Kwon EM, Ostrander EA, Nejentsev S, Peters U. Comprehensive association analysis of the vitamin D pathway genes, VDR, CYP27B1, and CYP24A1, in prostate cancer. Cancer Epidemiol Biomarkers Prev. 2007 Oct;16(10):1990-9.

88. Kim Y, Je Y. Vitamin D intake, blood 25(OH)D levels, and breast cancer risk or mortality: A meta-analysis. Br J Cancer. 2014 May 27;110(11):2772-84.

89. Lawler T, Warren Andersen S. Serum 25-hydroxyvitamin D and cancer risk: A systematic review of Mendelian randomization studies. Nutrients. 2023 Jan;15(2):422.

90. Wang R. Mendelian randomization study updates the effect of 25-hydroxyvitamin D levels on the risk of multiple sclerosis. J Transl Med. 2022 Jan 3;20(1):3.

91. Francis I, AlAbdali N, Kapila K, John B, Al-Temaimi RA. Vitamin D pathway related polymorphisms and vitamin D receptor expression in breast cancer. Int J Vitam Nutr Res. 2021 Jan;91(1-2):124-32.

92. Al-Azhri J, Zhang Y, Bshara W, Zirpoli G, McCann SE, Khoury T, et al. Tumor expression of vitamin D receptor and breast cancer histopathological characteristics and prognosis. Clin Cancer Res. 2017 Jan 1;23(1):97-103.

93. Chakraborty M, Arora M, Ramteke A, Yadav V, Naaz H, Muntakhab M, et al. FokI polymorphism of vitamin D receptor gene and deficiency of serum vitamin D increases the risk of breast cancer in north Indian women. Endocrine. 2023 Mar 1;81(1):168-74.

94. Schettini F, Prat A. Dissecting the biological heterogeneity of HER2- positive breast cancer. Breast. 2021 Aug 5;59:339-50.

95. Schmidt G, Gluz O, Christgen M, Reinisch M, Kümmel S, Nitz U, et al. HER2-low status as a distinct breast cancer subtype: Myth or truth? Analysis of the WSG trials WSG-ADAPT-HR+/HER2-, WSG-PlanB, and WSG-ADAPT-TN. Breast Cancer Res. 2025;27(1):22.

96. Li Z, Metzger Filho O, Viale G, Dell’orto P, Russo L, Goyette MA, et al. HER2 heterogeneity and treatment response-associated profiles in HER2-positive breast cancer in the NCT02326974 clinical trial. J Clin Invest. 2024;134(7):e176454.

97. Shankaramurthy KN, Devaranavadagi BB, Hundekari IA. Immunohistochemical expression of vitamin D receptors (VDRs) and estrogen receptor beta 1 (ERβ1) in molecular subtypes of triple-negative breast cancer tumors: A cross-sectional study. Cureus. 2025 Jan 18;17(1):e77637.

98. Blasiak J, Pawlowska E, Chojnacki J, Szczepanska J, Fila M, Chojnacki C. Vitamin D in triple-negative and BRCA1-deficient breast cancer - implications for pathogenesis and therapy. Int J Mol Sci. 2020 May 23;21(10):3670.

99. Blasiak J, Chojnacki J, Pawlowska E, Jablkowska A, Chojnacki C. Vitamin D may protect against breast cancer through the regulation of long noncoding RNAs by VDR signaling. Int J Mol Sci. 2022 Mar 16;23(6):3189.

100. Welsh J. Vitamin D and breast cancer: Past and present. J Steroid Biochem Mol Biol. 2018 Mar;177:15-20.

101. Welsh J, Wietzke JA, Zinser GM, Smyczek S, Romu S, Tribble E, et al. Impact of the vitamin D3 receptor on growth-regulatory pathways in mammary gland and breast cancer. J Steroid Biochem Mol Biol. 2002 Dec;83(1-5):85-92.

102. Choi E, Mun GI, Lee J, Lee H, Cho J, Lee YS. BRCA1 deficiency in triple-negative breast cancer: Protein stability as a basis for therapy. Biomed Pharmacother. 2023 Feb 1;158:114090.

103. Cheng TY, Millen AE, Wactawski-Wende J, Beresford SA, LaCroix AZ, Zheng Y, et al. Vitamin D intake determines vitamin D status of postmenopausal women, particularly those with limited sun exposure123. J Nutr. 2014 May;144(5):681-9.

104. Oussedik-Lehtihet S, Haouichat C, Hammoumraoui N, Ducros E, Gouhier-Kodas C, Lancrenon S, et al. Hypovitaminosis D and its associated factors in North Algerian postmenopausal women: Results of a cross-sectional study. J Nutr Metab. 2017;2017:9032141.

105. Abuhijleh H, Alkhatib D, Ganji V. Hypovitaminosis D and metabolic syndrome in postmenopausal women. Healthcare (Basel). 2022 Oct 14;10(10):2026.

106. Kazemian E, Amouzegar A, Akbari ME, Moradi N, Gharibzadeh S, Jamshidi-Naeini Y, et al. Vitamin D receptor gene polymorphisms affecting changes in visceral fat, waist circumference and lipid profile in breast cancer survivors supplemented with vitamin D3. Lipids Health Dis. 2019 Dec;18(1):161.

107. Ochs-Balcom HM, Cicek MS, Thompson CL, Tucker TC, Elston RC, Plummer SJ, et al. Association of vitamin D receptor gene variants, adiposity and colon cancer. Carcinogenesis. 2008 Sep;29(9):1788-93.

108. Amr R. Interrelations of vitamin D status with adiposity and muscle mass in adult women. BMJ Nutr Prev Health. 2025 Mar 25;8(1):e000983.

109. Watts EL, Gonzalez-Feliciano A, Gunter MJ, Chatterjee N, Moore SC. Adiposity and Cancer: Systematic Review and Meta-Analysis. [medRxiv Preprint]; 2025 Sep 16.

110. Spyksma EE, Alexandridou A, Mai K, Volmer DA, Stokes CS. An overview of different vitamin D compounds in the setting of adiposity. Nutrients. 2024 Jan;16(2):231.

111. Huss L, Gulz-Haake I, Nilsson E, Tryggvadottir H, Nilsson L, Nodin B, et al. The vitamin D receptor as a prognostic marker in breast cancer - a cohort study. Nutrients. 2024 Jan;16(7):931.

112. Voutsadakis IA. Vitamin D baseline levels at diagnosis of breast cancer: A systematic review and meta-analysis. Hematol Oncol Stem Cell Ther. 2021 Mar 1;14(1):16-26.

113. Lindgren H, Ademi D, Godina C, Tryggvadottir H, Isaksson K, Jernström H. Potential interplay between tumor size and vitamin D receptor (VDR) polymorphisms in breast cancer prognosis: A prospective cohort study. Cancer Causes Control. 2024;35(6):907-19.

114. Zeng R, Li H, Jia L, Lee SH, Jiang R, Zhang Y, et al. Association of CYP24A1 with survival and drug resistance in clinical cancer patients: A meta-analysis. BMC Cancer. 2022 Dec 16;22(1):1317.

115. Anderson MG, Nakane M, Ruan X, Kroeger PE, Wu-Wong JR. Expression of VDR and CYP24A1 mRNA in human tumors. Cancer Chemother Pharmacol. 2006 Jan;57(2):234-40.

116. Luo W, Karpf AR, Deeb KK, Muindi JR, Morrison CD, Johnson CS, et al. Epigenetic regulation of vitamin D 24-Hydroxylase/CYP24A1 in human prostate cancer. Cancer Res. 2010 Jul 15;70(14):5953-62.

117. Santos-Martínez N, Díaz L, Ordaz-Rosado D, García-Quiroz J, Barrera D, Avila E, et al. Calcitriol restores antiestrogen responsiveness in estrogen receptor negative breast cancer cells: A potential new therapeutic approach. BMC Cancer. 2014 Mar 29;14:230.

118. Santos-Martínez N, Díaz L, Ortiz-Ortega VM, Ordaz-Rosado D, Prado-Garcia H, Avila E, et al. Calcitriol induces estrogen receptor α expression through direct transcriptional regulation and epigenetic modifications in estrogen receptor-negative breast cancer cells. Am J Cancer Res. 2021 Dec 15;11(12):5951-64.

119. Streb J, Łazarczyk A, Hałubiec P, Streb-Smoleń A, Ciuruś J, Ulatowska- Białas M, et al. Vitamin D receptor is associated with prognostic characteristics of breast cancer after neoadjuvant chemotherapy - an observational study. Front Oncol. 2024;14:1458124.

120. Desgres M, Poyraz M, Sari B, Duhoux FP, Van Marcke C, Corbet C. Resistance to neoadjuvant chemotherapy in breast cancers: A metabolic perspective. J Exp Clin Cancer Res. 2025 Aug 11;44(1):234.

121. Sternlicht H, Glezerman IG. Hypercalcemia of malignancy and new treatment options. Ther Clin Risk Manag. 2015 Dec 4;11:1779-88.

122. Kometas ML, Maalouf NM. Hypercalcemia of malignancy: Mechanisms and therapeutic implications of concurrently elevated PTHrP and calcitriol. J Endocr Soc. 2025 Jul 14;9(9):bvaf104.

Published

07-12-2025

How to Cite

VEMURI HELENA, et al. “VITAMIN D–VITAMIN D RECEPTOR AXIS IN BREAST CANCER: MECHANISMS, EVIDENCE, AND CLINICAL IMPLICATIONS”. Asian Journal of Pharmaceutical and Clinical Research, vol. 18, no. 12, Dec. 2025, pp. 18-26, doi:10.22159/ajpcr.2025v18i12.57515.

Issue

Section

Review Article(s)