EXPLORING THE NEUROPROTECTIVE POTENTIAL OF GEISSOSPERMINE AND HARMINE ON DOPAMINE D1 RECEPTORS: AN IN SILICO STUDY

Authors

  • SRIRANJINI A. S. Department of Biotechnology, Graphic Era Deemed to be University, Dehradun-248002, India https://orcid.org/0000-0002-1116-8349
  • ASHSIH THAPLIYAL Department of Biotechnology, Graphic Era Deemed to be University, Dehradun-248002, India https://orcid.org/0000-0002-1116-8349
  • KUMUD PANT Department of Biotechnology, Graphic Era Deemed to be University, Dehradun-248002, India

DOI:

https://doi.org/10.22159/ijap.2025v17i2.51119

Keywords:

Geissospermine, Harmine, Dopamine D1 Receptors, Molecular dynamic simulation, In silico

Abstract

Objective: This study aims to explore the binding affinities and interaction mechanisms of the phytocompounds geissospermine and harmine with the Dopamine D1 receptor (D1R), providing insight into their potential as therapeutic agents for neurological disorders.

Methods: The three-dimensional structure of the Dopamine D1 receptor was obtained from the Protein Data Bank (PDB), while the structures of geissospermine and harmine were retrieved from the PubChem database. Preliminary screenings, including secondary structure validation and pharmacokinetic profiling, were conducted to assess the suitability of these compounds for docking studies. Molecular docking was performed using AutoDock Vina to predict the binding affinities and interaction profiles of geissospermine and harmine with D1R. To further validate these interactions, Molecular Dynamics (MD) simulations were conducted using GROMACS v2019.4 to assess the stability and behavior of the geissospermine-D1R complex over time. Parameters such as Root mean Square Deviation (RMSD) were analyzed to evaluate the dynamic stability of the protein-ligand interactions.

Results: Molecular docking revealed that geissospermine exhibited a higher binding affinity towards D1R with a binding energy of-8.6 kcal/mol, interacting with key residues including ILE 1009, ARG 1008, ASN 311, VAL 22, GLU 85, THR 26, ALA 57, LEU 25, and PHE 29. Harmine, while also demonstrating significant interactions, showed a slightly lower binding affinity of-7.2 kcal/mol and formed interactions with residues such as SER 310, LYS 81, ASP 314, ALA 84, TRP 90, CYS 186, TRP 99, and PHE 92. MD simulations confirmed the stable binding of geissospermine to D1R, as reflected by consistent RMSD values over the simulation period.

Conclusion: Geissospermine’s superior binding affinity and stable interaction with D1R highlight its potential as a therapeutic candidate for neurological disorders, particularly Huntington’s disease, where modulation of dopamine signaling could yield significant clinical benefits. These findings warrant further investigation into the neuroprotective potential of geissospermine in dopaminergic dysfunction.

References

Possemato E, LA Barbera L, Nobili A, Krashia P, D Amelio M. The role of dopamine in NLRP3 inflammasome inhibition: implications for neurodegenerative diseases. Ageing Res Rev. 2023;87:101907. doi: 10.1016/j.arr.2023.101907, PMID 36893920.

HE J, Zhu G, Wang G, Zhang F. Oxidative stress and neuroinflammation potentiate each other to promote progression of dopamine neurodegeneration. Oxid Med Cell Longev. 2020 Jul 3;2020:6137521. doi: 10.1155/2020/6137521, PMID 32714488, PMCID PMC7354668.

LI H, Yang P, Knight W, Guo Y, Perlmutter JS, Benzinger TL. The interactions of dopamine and oxidative damage in the striatum of patients with neurodegenerative diseases. J Neurochem. 2020;152(2):235-51. doi: 10.1111/jnc.14898, PMID 31613384, PMCID PMC6981021.

Moreno Delgado D, Puigdellivol M, Moreno E, Rodriguez Ruiz M, Botta J, Gasperini P. Modulation of dopamine D1 receptors via histamine H3 receptors is a novel therapeutic target for huntingtons disease. Elife. 2020;9:e51093. doi: 10.7554/eLife.51093, PMID 32513388, PMCID PMC7282811.

Kaasinen V, Vahlberg T, Stoessl AJ, Strafella AP, Antonini A. Dopamine receptors in parkinsons disease: a meta-analysis of imaging studies. Mov Disord. 2021;36(8):1781-91. doi: 10.1002/mds.28632, PMID 33955044.

Martel JC, Gatti MC Arthur S. Dopamine receptor subtypes physiology and pharmacology: new ligands and concepts in schizophrenia. Front Pharmacol. 2020;11:1003. doi: 10.3389/fphar.2020.01003, PMID 32765257, PMCID PMC7379027.

Botticelli L, Micioni DI, Bonaventura E, Del Bello F, Giorgioni G, Piergentili A, Romano A. Underlying susceptibility to eating disorders and drug abuse: genetic and pharmacological aspects of dopamine D4 receptors. Nutrients. 2020;12(8):2288. doi: 10.3390/nu12082288, PMID 32751662, PMCID PMC7468707.

DE Bartolomeis A, Barone A, Begni V, Riva MA. Present and future antipsychotic drugs: a systematic review of the putative mechanisms of action for efficacy and a critical appraisal under a translational perspective. Pharmacol Res. 2022;176:106078. doi: 10.1016/j.phrs.2022.106078, PMID 35026403.

Newman AH, KU T, Jordan CJ, Bonifazi A, XI ZX. New drugs old targets: tweaking the dopamine system to treat psychostimulant use disorders. Annu Rev Pharmacol Toxicol. 2021;61(1):609-28. doi: 10.1146/annurev-pharmtox-030220-124205, PMID 33411583, PMCID PMC9341034.

Ang JJ, Low BS, Wong PF. Dopamine and central dopaminergic circuitry in neurodegenerative diseases: roles and mechanisms of action of natural phytochemicals. Pharmacological Research Natural Products. 2024 Jun;3:100050. doi: 10.1016/j.prenap.2024.100050.

Lima JA, Costa R TW, DA Fonseca ACC, DO Amaral RF, Nascimento M DO Santos, DSB Filho OA DE Miranda ALP, Ferreira Neto DC, Lima FRS, Hamerski L, Tinoco LW. Geissoschizoline a promising alkaloid for alzheimers disease: inhibition of human cholinesterases anti-inflammatory effects and molecular docking. Bioorg Chem. 2020 Nov;104:104215. doi: 10.1016/j.bioorg.2020.104215, PMID 32920358.

Lima JA, Costa TW, Silva LL, Miranda AL, Pinto AC. Antinociceptive and anti-inflammatory effects of a geissospermum vellosii stem bark fraction. An Acad Bras Cienc. 2016;88(1):237-48. doi: 10.1590/0001-3765201520140374, PMID 26840005.

Xie Z, Liu W, Dang R, HU X, Cai F, Xiang Z. Effects and mechanisms of harmine on ameliorating ethanol-induced memory impairment. J Ethnopharmacol. 2025;337(1):118789. doi: 10.1016/j.jep.2024.118789, PMID 39241971.

Kadyan P, Singh L. Unraveling the mechanistic interplay of mediators orchestrating the neuroprotective potential of harmine. Pharmacol Rep. 2024;76(4):665-78. doi: 10.1007/s43440-024-00602-8, PMID 38758470.

Jayasurya, Swathy, Susha, Sharma S. Molecular docking and investigation of boswellia serrata phytocompounds as cancer therapeutics to target growth factor receptors: an in silico approach. Int J App Pharm. 2023;15(4):173-83. doi: 10.22159/ijap.2023v15i4.47833.

Vora D, Kapadia H, Dinesh S, Sharma S, Manjegowda DS. Gymnema sylvestre as a potential therapeutic agent for PCOS: insights from mRNA differential gene expression and molecular docking analysis. Futur J Pharm Sci. 2023 Aug;9(1). doi: 10.1186/s43094-023-00529-6.

Bhor S, Tonny SH, Dinesh S, Sharma S. Computational screening of damaging nsSNPs in human SOD1 genes associated with amyotrophic lateral sclerosis identifies destabilising effects of G38R and G42D mutations through in silico evaluation. In Silico Pharmacol. 2024;12(1):20. doi: 10.1007/s40203-024-00191-7, PMID 38559706, PMCID PMC10973320.

Sunkadakatte Venugopal B, Dinesh S, Sharma S, Govinda Srinivasan S, Sosalagere Manjegowda D. Exploring the therapeutic potential of green tea phytocompounds for pancreatic cancer: an mRNA differential gene expression and pathway analysis study. Biomedicine. 2023;43(4):1231-8. doi: 10.51248/.v43i4.2869.

Galgale S, Zainab R, Kumar A. Molecular docking and dynamic simulation-based screening identifies inhibitors of targeted SARS-CoV-2 3clpro and human ace2. Int J App Pharm. 2023;15(6):297-308. doi: 10.22159/ijap.2023v15i6.48782.

Bhowmik R, Nath R, Sharma S, Roy R, Biswas R. High throughput screening and dynamic studies of selected compounds against SARS-CoV-2. Int J App Pharm. 2022;14(1):251-60. doi: 10.22159/ijap.2022v14i1.43105.

Jones Tabah J, Mohammad H, Paulus EG, Clarke PB, Hebert TE. The signaling and pharmacology of the dopamine D1 receptor. Front Cell Neurosci. 2021;15:806618. doi: 10.3389/fncel.2021.806618, PMID 35110997, PMCID PMC8801442.

Yang P, Knight WC, LI H, Guo Y, Perlmutter JS, Benzinger TL. Dopamine D1 + D3 receptor density may correlate with parkinson disease clinical features. Ann Clin Transl Neurol. 2021;8(1):224-37. doi: 10.1002/acn3.51274, PMID 33348472.

Published

07-03-2025

How to Cite

A. S., S., THAPLIYAL, A., & PANT, K. (2025). EXPLORING THE NEUROPROTECTIVE POTENTIAL OF GEISSOSPERMINE AND HARMINE ON DOPAMINE D1 RECEPTORS: AN IN SILICO STUDY. International Journal of Applied Pharmaceutics, 17(2), 306–313. https://doi.org/10.22159/ijap.2025v17i2.51119

Issue

Section

Original Article(s)

Similar Articles

<< < 79 80 81 82 > >> 

You may also start an advanced similarity search for this article.