AN OVERVIEW OF NANO-CRYSTALLINE CELLULOSE NANOFIBERS AND THEIR APPLICATIONS IN DRUG DELIVERY

Authors

  • NAWZAT D. ALJBOUR Faculty of Pharmacy, Middle East University, Amman, Jordan https://orcid.org/0000-0002-5714-3753
  • ENAS A. ALKHADER Faculty of Pharmacy, Middle East University, Amman, Jordan
  • MOHAMMAD D. BEG School of Engineering, University of Waikato, Private Bag 3105, Hamilton-3240, New Zealand

DOI:

https://doi.org/10.22159/ijap.2025v17i2.52561

Keywords:

Nanofibers, Nanocrystalline cellulose, Drug delivery applications, Electrospinning process

Abstract

Made from a variety of natural sources, Nano Crystalline Cellulose (NCC) is a unique renewable nanomaterial with a wide range of applications due to its high stiffness and strength, low weight, biodegradability, and environmental benefits. Because of its special inherent qualities, NCC is one of the most renewable materials to be addressed by nanomaterials. The origins, manufacture, characteristics, and applications of nanomaterials, including NCC and nanofibers, have been extensively studied by a large number of researchers throughout the years. Strong chemical reactivity, crystallinity, strength and stiffness, biocompatibility, biodegradability, shape, and nanoscale dimensions are just a few of the remarkable properties that these nanomaterials have been shown to possess in countless investigations. These characteristics enable the application of these nanoparticles in a number of fields, including medicine. Among the most traditional and popular techniques. Electrospinning is one of the earliest and most popular techniques for producing nanofibers. This method works well and can be modified to produce continuous nanofibers. NCC-based nanofibers are novel materials in the biomaterials industry. Recent studies demonstrated that electrospun nanofibers could be efficiently loaded with a wide range of drugs, such as proteins, chemotherapeutic agents, antibiotics, and analgesics with anti-inflammatory qualities. One application of NCC and nanofibers in the medical field is drug delivery. This review highlights a number of issues related to NCC nanofibers and their use in drug delivery applications, beginning with discussing the various natural polymer types used in drug delivery applications, the physicochemical and biological properties of NCC, its various applications, its significance, and its preparation techniques.

References

Jorfi M, Foster EJ. Recent advances in nanocellulose for biomedical applications. J Appl Polym Sci. 2015 Apr 10;132(14). doi: 10.1002/app.41719.

Satyanarayana KG, Arizaga GG, Wypych F. Biodegradable composites based on lignocellulosic fibers an overview. Prog Polym Sci. 2009;34(9):982-1021. doi: 10.1016/j.progpolymsci.2008.12.002.

Majeed K, Jawaid M, Hassan A, Abu Bakar A, Abdul Khalil HP, Salema AA. Potential materials for food packaging from nanoclay/natural fiber-filled hybrid composites. Mater Des. 2013 Apr;46:391-410. doi: 10.1016/j.matdes.2012.10.044.

Herrera Franco PJ, Valadez Gonzalez A. A study of the mechanical properties of short natural fiber reinforced composites. Composites Part B: Engineering. 2005;36(8):597-608. doi: 10.1016/j.compositesb.2005.04.001.

Kim IY, Seo SJ, Moon HS, Yoo MK, Park IY, Kim BC. Chitosan and its derivatives for tissue engineering applications. Biotechnol Adv. 2008;26(1):1-21. doi: 10.1016/j.biotechadv.2007.07.009, PMID 17884325.

Correa AC, DE Morais Teixeira E, Pessan LA, Mattoso LH. Cellulose nanofibers from curaua fibers. Cellulose. 2010;17(6):1183-92. doi: 10.1007/s10570-010-9453-3.

Mohamad Haafiz MK, Eichhorn SJ, Hassan A, Jawaid M. Isolation and characterization of microcrystalline cellulose from oil palm biomass residue. Carbohydr Polym. 2013;93(2):628-34. doi: 10.1016/j.carbpol.2013.01.035, PMID 23499105.

Kalia S, Dufresne A, Cherian BM, Kaith BS, Averous L, Njuguna J. Cellulose-based bio and nanocomposites: a review. Int J Polym Sci. 2011;2011:1-35. doi: 10.1155/2011/837875.

Oksman K, Mathew AP, Langstrom R, Nystrom B, Joseph K. The influence of fibre microstructure on fibre breakage and mechanical properties of natural fibre reinforced polypropylene. Compos Sci Technol. 2009;69(11-12):1847-53. doi: 10.1016/j.compscitech.2009.03.020.

Puri VP. Effect of crystallinity and degree of polymerization of cellulose on enzymatic saccharification. Biotechnol Bioeng. 1984;26(10):1219-22. doi: 10.1002/bit.260261010, PMID 18551639.

LI C, Wang J, Wang Y, Gao H, Wei G, Huang Y. Recent progress in drug delivery. Acta Pharm Sin B. 2019;9(6):1145-62. doi: 10.1016/j.apsb.2019.08.003, PMID 31867161.

Amgoth C, Phan C, Banavoth M, Rompivalasa S, Tang G. Polymer properties: functionalization and surface modified nanoparticles. In: role of novel drug delivery vehicles in nanobiomedicine. 1st ed. Intech Open; 2019.

Chander A, Santhosh R, Avinash S, Priyanka M, Guping T, Murali B. Polymeric nanoparticles: preparation and surface modification. In: Kumar V, Guleria P, Dasgupta N, Ranjan S, editors. Functionalized nanomaterials. 1st ed. Vol. I. CRC Press; 2020. p. 161-70. doi: 10.1201/9781351021623-10.

Bharadwaz A, Jayasuriya AC. Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration. Mater Sci Eng C Mater Biol Appl. 2020;110:110698. doi: 10.1016/j.msec.2020.110698, PMID 32204012.

Luckachan GE, Pillai CK. Biodegradable polymers a review on recent trends and emerging perspectives. J Polym Environ. 2011;19(3):637-76. doi: 10.1007/s10924-011-0317-1.

Sarkar T, Ahmed AB. Development and in vitro characterization of chitosan-loaded paclitaxel nanoparticle. Asian J Pharm Clin Res. 2016;9(9) Suppl 3:145-8. doi: 10.22159/ajpcr.2016.v9s3.12894.

Moussa A. Synthesis and characterization of chitosan oligomers for biomedical applications. 1st ed. Universite De Lyon; 2019.

Kashyap PL, Xiang X, Heiden P. Chitosan nanoparticle based delivery systems for sustainable agriculture. Int J Biol Macromol. 2015;77:36-51. doi: 10.1016/j.ijbiomac.2015.02.039, PMID 25748851.

Islam MM, Shahruzzaman M, Biswas S, Nurus Sakib MN, Rashid TU. Chitosan-based bioactive materials in tissue engineering applications a review. Bioact Mater. 2020;5(1):164-83. doi: 10.1016/j.bioactmat.2020.01.012, PMID 32083230.

Mikusova V, Mikus P. Advances in chitosan-based nanoparticles for drug delivery. Int J Mol Sci. 2021;22(17):9652. doi: 10.3390/ijms22179652, PMID 34502560.

Parhi R. Drug delivery applications of chitin and chitosan: a review. Environ Chem Lett. 2020;18(3):577-94. doi: 10.1007/s10311-020-00963-5.

Agarwal T, Chiesa I, Costantini M, Lopamarda A, Tirelli MC, Borra OP. Chitosan and its derivatives in 3D/4D (bio) printing for tissue engineering and drug delivery applications. Int J Biol Macromol. 2023 Aug 15;246:125669. doi: 10.1016/j.ijbiomac.2023.125669, PMID 37406901.

Karayianni M, Sentoukas T, Skandalis A, Pippa N, Pispas S. Chitosan based nanoparticles for nucleic acid delivery: technological aspects applications and future perspectives. Pharmaceutics. 2023;15(7):1849. doi: 10.3390/pharmaceutics15071849, PMID 37514036.

Nerli G, Robla S, Bartalesi M, Luceri C, D Ambrosio M, Csaba N. Chitosan coated niosomes for nose to brain delivery of clonazepam: formulation stability and permeability studies. Carbohydrate Polymer Technologies and Applications. 2023 Dec;6:1-9. doi: 10.1016/j.carpta.2023.100332.

Hard SA, Shivakumar HN, Redhwan MA. Development and optimization of in situ gel containing chitosan nanoparticles for possible nose to brain delivery of vinpocetine. Int J Biol Macromol. 2023;253(6):127217. doi: 10.1016/j.ijbiomac.2023.127217, PMID 37793522.

Gabold B, Adams F, Brameyer S, Jung K, Ried CL, Merdan T. Transferrin modified chitosan nanoparticles for targeted nose to brain delivery of proteins. Drug Deliv Transl Res. 2023;13(3):822-38. doi: 10.1007/s13346-022-01245-z, PMID 36207657.

Bhaskaran NA, Jitta SR, Salwa KL, Kumar L, Sharma P, Kulkarni OP. Folic acid chitosan functionalized polymeric nanocarriers to treat colon cancer. Int J Biol Macromol. 2023;253(5):127142. doi: 10.1016/j.ijbiomac.2023.127142, PMID 37797853.

Alsadooni JF, Haghi M, Barzegar A, Feizi MA. The effect of chitosan hydrogel containing gold nanoparticle complex with paclitaxel on colon cancer cell line. Int J Biol Macromol. 2023 Aug 30;247:125612. doi: 10.1016/j.ijbiomac.2023.125612, PMID 37390995.

Leonard TE, Liko AF, Gustiananda M, Putra AB, Juanssilfero AB, Hartrianti P. Thiolated pectin chitosan composites: potential mucoadhesive drug delivery system with selective cytotoxicity towards colorectal cancer. Int J Biol Macromol. 2023 Jan15;225:1-12. doi: 10.1016/j.ijbiomac.2022.12.012, PMID 36481327.

Hasnain MS, Jameel E, Mohanta B, Dhara AK, Alkahtani S, Nayak AK. Alginates: sources structure and properties. In: Alginates in drug delivery. Elsevier; 2020. p. 1-17. doi: 10.1016/B978-0-12-817640-5.00001-7.

Pagliaccia B. Insights on the recovery characterization and valorization of extracellular polymeric substances (EPS) from granular sludge applied in innovative wastewater treatment systems. INSA De Toulouse. Universite DE Florence; 2022.

Rosiak P, Latanska I, Paul P, Sujka W, Kolesinska B. Modification of alginates to modulate their physic-chemical properties and obtain biomaterials with different functional properties. Molecules. 2021;26(23):7264. doi: 10.3390/molecules26237264, PMID 34885846.

Hariyadi DM, Islam N. Current status of alginate in drug delivery. Adv Pharmacol Pharm Sci. 2020;2020:8886095. doi: 10.1155/2020/8886095, PMID 32832902.

Severino P, DA Silva CF, Andrade LN, DE Lima Oliveira D, Campos J, Souto EB. Alginate nanoparticles for drug delivery and targeting. Curr Pharm Des. 2019;25(11):1312-34. doi: 10.2174/1381612825666190425163424, PMID 31465282.

Chuang JJ, Huang YY, LO SH, Hsu TF, Huang WY, Huang SL. Effects of pH on the shape of alginate particles and its release behavior. Int J Polym Sci. 2017;2017:1-9. doi: 10.1155/2017/3902704.

Ahmad Z, Sharma S, Khuller GK. Chemotherapeutic evaluation of alginate nanoparticle encapsulated azole antifungal and antitubercular drugs against murine tuberculosis. Nanomedicine. 2007;3(3):239-43. doi: 10.1016/j.nano.2007.05.001, PMID 17652032.

Ahmad Z, Sharma S, Khuller GK. Inhalable alginate nanoparticles as antitubercular drug carriers against experimental tuberculosis. Int J Antimicrob Agents. 2005;26(4):298-303. doi: 10.1016/j.ijantimicag.2005.07.012, PMID 16154726.

Shaji J, Shaikh M. Formulation optimization and characterization of biocompatible inhalable d-cycloserine loaded alginate chitosan nanoparticles for pulmonary drug delivery. Asian J Pharm Clin Res. 2016;9(2):82-95. doi: 10.22159/ajpcr.2016.v9s2.11814.

Alipour S, Montaseri H, Tafaghodi M. Preparation and characterization of biodegradable paclitaxel loaded alginate microparticles for pulmonary delivery. Colloids Surf B Biointerfaces. 2010;81(2):521-9. doi: 10.1016/j.colsurfb.2010.07.050, PMID 20732796.

Mahmoud AA, Elkasabgy NA, Abdelkhalek AA. Design and characterization of emulsified spray-dried alginate microparticles as a carrier for the dually acting drug Roflumilast. Eur J Pharm Sci. 2018 Sep 15;122:64-76. doi: 10.1016/j.ejps.2018.06.015, PMID 29928985.

Hussein N, Omer H, Ismael A, Albed Alhnan M, Elhissi A, Ahmed W. Spray dried alginate microparticles for potential intranasal delivery of ropinirole hydrochloride: development characterization and histopathological evaluation. Pharm Dev Technol. 2020;25(3):290-9. doi: 10.1080/10837450.2019.1567762, PMID 30626225.

Mali AJ, Pawar AP, Bothiraja C. Improved lung delivery of budesonide from biopolymer-based dry powder inhaler through natural inhalation of rat. Materials Technology. 2014;29(6):350-7. doi: 10.1179/1753555714Y.0000000163.

Nami S, Aghebati Maleki A, Aghebati Maleki L. Current applications and prospects of nanoparticles for antifungal drug delivery. Excli J. 2021 Mar 8;20:562-84. doi: 10.17179/excli2020-3068, PMID 33883983.

Belinskaia DA, Voronina PA, Batalova AA, Goncharov NV. Serum albumin. Encyclopedia. 2020;1(1):65-75. doi: 10.3390/encyclopedia1010009.

Van Der Vusse GJ. Albumin as fatty acid transporter. Drug Metab Pharmacokinet. 2009;24(4):300-7. doi: 10.2133/dmpk.24.300, PMID 19745557.

Spada A, Emami J, Tuszynski JA, Lavasanifar A. The uniqueness of albumin as a carrier in nano-drug delivery. Mol Pharm. 2021;18(5):1862-94. doi: 10.1021/acs.molpharmaceut.1c00046, PMID 33787270.

Kianfar E. Protein nanoparticles in drug delivery: animal protein plant proteins and protein cages albumin nanoparticles. J Nanobiotechnology. 2021;19(1):159. doi: 10.1186/s12951-021-00896-3, PMID 34051806.

Tayyab S, Feroz SR. Serum albumin: clinical significance of drug binding and development as drug delivery vehicle. Adv Protein Chem Struct Biol. 2021;123:193-218. doi: 10.1016/bs.apcsb.2020.08.003, PMID 33485484.

Lee H, Park S, Kang JE, Lee HM, Kim SA, Rhie SJ. Efficacy and safety of nanoparticle albumin-bound paclitaxel compared with solvent-based taxanes for metastatic breast cancer: a meta-analysis. Sci Rep. 2020;10(1):530. doi: 10.1038/s41598-019-57380-0, PMID 31953463.

Zhang S, Zhou Y, Zhang W, LU W. Immunomodulatory effects of cellulose nanocrystals: a review. Front Bioeng Biotechnol. 2022;10:103-26.

Kumari P, Paul M, Bobde Y, Soniya K, Kiran Rompicharla SV, Ghosh B. Albumin based lipoprotein nanoparticles for improved delivery and anticancer activity of curcumin for cancer treatment. Nanomedicine (Lond). 2020;15(29):2851-69. doi: 10.2217/nnm-2020-0232, PMID 33275041.

Solanki R, Patel K, Patel S. Bovine serum albumin nanoparticles for the efficient delivery of berberine: preparation characterization and in vitro biological studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2021;608:125-50. doi: 10.1016/j.colsurfa.2020.125501.

YU Z, LI X, Duan J, Yang XD. Targeted treatment of colon cancer with aptamer guided albumin nanoparticles loaded with docetaxel. Int J Nanomedicine. 2020 Sep 11;15:6737-48. doi: 10.2147/IJN.S267177, PMID 32982230.

Gong T, Tan T, Zhang P, LI H, Deng C, Huang Y. Palmitic acid modified bovine serum albumin nanoparticles target scavenger receptor a on activated macrophages to treat rheumatoid arthritis. Biomaterials. 2020;258:120296. doi: 10.1016/j.biomaterials.2020.120296, PMID 32781326.

Scutera S, Argenziano M, Sparti R, Bessone F, Bianco G, Bastiancich C. Enhanced antimicrobial and antibiofilm effect of new colistin loaded human albumin nanoparticles. Antibiotics (Basel). 2021;10(1):57. doi: 10.3390/antibiotics10010057, PMID 33430076.

Zhang K, LI D, Zhou B, Liu J, Luo X, Wei R. Arsenite loaded albumin nanoparticles for targeted synergistic chemo photothermal therapy of HCC. Biomater Sci. 2021;10(1):243-57. doi: 10.1039/d1bm01374b, PMID 34846385.

Giri S, Dutta P, Kumarasamy D, Giri TK. Natural polysaccharides: types basic structure and suitability for forming hydrogels. In: Plant and algal hydrogels for drug delivery and regenerative medicine. 1st ed. Elsevier; 2021. p. 1-35. doi: 10.1016/B978-0-12-821649-1.00007-6.

Burke SE, Barrett CJ. pH-responsive properties of multilayered poly(L-lysine)/hyaluronic acid surfaces. Biomacromolecules. 2003;4(6):1773-83. doi: 10.1021/bm034184w, PMID 14606908.

Kulkarni SS, Patil SD, Chavan DG. Extraction purification and characterization of hyaluronic acid from rooster comb. JANS. 2018;10(1):313-5. doi: 10.31018/jans.v10i1.1623.

Kotla NG, Mohd Isa IL, Larranaga A, Maddiboyina B, Swamy SK, Sivaraman G. Hyaluronic acid based bioconjugate systems scaffolds and their therapeutic potential. Adv Healthc Mater. 2023;12(20):e2203104. doi: 10.1002/adhm.202203104, PMID 36972409.

Vasvani S, Kulkarni P, Rawtani D. Hyaluronic acid: a review on its biology aspects of drug delivery route of administrations and a special emphasis on its approved marketed products and recent clinical studies. Int J Biol Macromol. 2020;151:1012-29. doi: 10.1016/j.ijbiomac.2019.11.066, PMID 31715233.

Witting M, Boreham A, Brodwolf R, Vavrova K, Alexiev U, Friess W. Interactions of hyaluronic acid with the skin and implications for the dermal delivery of biomacromolecules. Mol Pharm. 2015;12(5):1391-401. doi: 10.1021/mp500676e, PMID 25871518.

Yang JA, Kim ES, Kwon JH, Kim H, Shin JH, Yun SH. Transdermal delivery of hyaluronic acid human growth hormone conjugate. Biomaterials. 2012;33(25):5947-54. doi: 10.1016/j.biomaterials.2012.05.003, PMID 22632765.

Fallacara A, Marchetti F, Pozzoli M, Citernesi UR, Manfredini S, Vertuani AS. Formulation and characterization of native and crosslinked hyaluronic acid microspheres for dermal delivery of sodium ascorbyl phosphate: a comparative study. Pharmaceutics. 2018;10(4):254. doi: 10.3390/pharmaceutics10040254, PMID 30513791.

Schulz A, Rickmann A, Wahl S, Germann A, Stanzel BV, Januschowski K. Alginate and hyaluronic acid based hydrogels as vitreous substitutes: an in vitro evaluation. Transl Vis Sci Technol. 2020;9(13):34. doi: 10.1167/tvst.9.13.34, PMID 33384888.

Jiang JL, Zhang WZ, NI WX, Shao JW. Insight on structure-property relationships of carrageenan from marine red algal: a review. Carbohydr Polym. 2021;257:117642. doi: 10.1016/j.carbpol.2021.117642, PMID 33541666.

Gomes Dos Reis L, Ghadiri M, Young P, Traini D. Nasal powder formulation of tranexamic acid and hyaluronic acid for the treatment of epistaxis. Pharm Res. 2020;37(10):186. doi: 10.1007/s11095-020-02913-w, PMID 32888133.

Tratnjek L, Simic L, Vukelic K, Knezevic Z, Kreft ME. Novel nasal formulation of xylometazoline with hyaluronic acid: in vitro ciliary beat frequency study. Eur J Pharm Biopharm. 2023 Nov;192:136-46. doi: 10.1016/j.ejpb.2023.10.002, PMID 37804998.

Naomi R, Bahari H, Ridzuan PM, Othman F. Natural based biomaterial for skin wound healing (gelatin vs. collagen): expert review. Polymers. 2021;13(14):2319. doi: 10.3390/polym13142319, PMID 34301076.

Arun A, Malrautu P, Laha A, Ramakrishna S. Gelatin nanofibers in drug delivery systems and tissue engineering. Eng Sci. 2021;16:71-81. doi: 10.30919/es8d527.

Hussain A, Hasan A, Babadaei MM, Bloukh SH, Edis Z, Rasti B. Application of gelatin nanoconjugates as potential internal stimuli responsive platforms for cancer drug delivery. J Mol Liq. 2020 Nov 15;318:114053. doi: 10.1016/j.molliq.2020.114053.

Raza F, Siyu L, Zafar H, Kamal Z, Zheng B, SU J. Recent advances in gelatin-based nanomedicine for targeted delivery of anti-cancer drugs. Curr Pharm Des. 2022;28(5):380-94. doi: 10.2174/1381612827666211102100118, PMID 34727851.

Madkhali OA. Drug delivery of gelatin nanoparticles as a biodegradable polymer for the treatment of infectious diseases: perspectives and challenges. Polymers. 2023;15(21):4327. doi: 10.3390/polym15214327, PMID 37960007.

Wan Ishak WH, Rosli NA, Ahmad I, Ramli S, Mohd Amin MC. Drug delivery and in vitro biocompatibility studies of gelatin nanocellulose smart hydrogels cross-linked with gamma radiation. J Mater Res Technol. 2021;15:7145-57. doi: 10.1016/j.jmrt.2021.11.095.

Bertsch P, Andree L, Besheli NH, Leeuwenburgh SC. Colloidal hydrogels made of gelatin nanoparticles exhibit fast stress relaxation at strains relevant for cell activity. Acta Biomater. 2022 Jan 15;138:124-32. doi: 10.1016/j.actbio.2021.10.053, PMID 34740854.

Freitas CM, Coimbra JS, Souza VG, Sousa RC. Structure and applications of pectin in food biomedical and pharmaceutical industry: a review. Coatings. 2021;11(8):922. doi: 10.3390/coatings11080922.

Wusigale L, Liang L, Luo Y. Casein and pectin: structures interactions and applications. Trends Food Sci Technol. 2020;97:391-403. doi: 10.1016/j.tifs.2020.01.027.

Ropartz D, Ralet MC. Pectin structure. In: Kontogiorgos V, editor. Pectin: technological and physiological properties. 1st ed. Cham: Springer International Publishing; 2020. p. 17-36. doi: 10.1007/978-3-030-53421-9_2.

Khotimchenko M. Pectin polymers for colon targeted antitumor drug delivery. Int J Biol Macromol. 2020 Sep 1;158:1110-24. doi: 10.1016/j.ijbiomac.2020.05.002, PMID 32387365.

Shehata EM, Gowayed MA, El Ganainy SO, Sheta E, Elnaggar YS, Abdallah OY. Pectin-coated nanostructured lipid carriers for targeted piperine delivery to hepatocellular carcinoma. Int J Pharm. 2022;619:121712. doi: 10.1016/j.ijpharm.2022.121712, PMID 35367582.

Lee S, Woo C, KI CS. Pectin nanogel formation via thiol norbornene photo click chemistry for transcutaneous antigen delivery. J Ind Eng Chem. 2022 Apr 25;108:159-69. doi: 10.1016/j.jiec.2021.12.038.

Guo Z, Wei Y, Zhang Y, XU Y, Zheng L, Zhu B. Carrageenan oligosaccharides: a comprehensive review of preparation isolation purification structure biological activities and applications. Algal Res. 2022;61:102-52. doi: 10.1016/j.algal.2021.102593.

Shafie MH, Kamal ML, Zulkiflee FF, Hasan S, Uyup NH, Abdullah S. Application of carrageenan extract from red seaweed (Rhodophyta) in cosmetic products: a review. J Indian Chem Soc. 2022;99(9):100613. doi: 10.1016/j.jics.2022.100613.

Liu F, Duan G, Yang H. Recent advances in exploiting carrageenans as a versatile functional material for promising biomedical applications. Int J Biol Macromol. 2023;235:123787. doi: 10.1016/j.ijbiomac.2023.123787, PMID 36858089.

Yegappan R, Selvaprithiviraj V, Amirthalingam S, Jayakumar R. Carrageenan based hydrogels for drug delivery tissue engineering and wound healing. Carbohydr Polym. 2018;198:385-400. doi: 10.1016/j.carbpol.2018.06.086, PMID 30093014.

Neamtu B, Barbu A, Negrea MO, Berghea Neamtu CS, Popescu D, Zahan M. Carrageenan-based compounds as wound healing materials. Int J Mol Sci. 2022;23(16):9117. doi: 10.3390/ijms23169117, PMID 36012381.

Heinze T. Cellulose: structure and properties. In: Rojas Oj, editor. Cellulose chemistry and properties: fibers nanocelluloses and advanced materials. Cham: Springer International Publishing; 2015. p. 1-52. doi: 10.1007/12_2015_319.

Lukova P, Katsarov P, Pilicheva B. Application of starch cellulose and their derivatives in the development of microparticle drug delivery systems. Polymers. 2023;15(17):3615. doi: 10.3390/polym15173615, PMID 37688241.

HU W, Chen S, Yang J, LI Z, Wang H. Functionalized bacterial cellulose derivatives and nanocomposites. Carbohydr Polym. 2014;101:1043-60. doi: 10.1016/j.carbpol.2013.09.102, PMID 24299873.

Rana AK, Frollini E, Thakur VK. Cellulose nanocrystals: pretreatments preparation strategies and surface functionalization. Int J Biol Macromol. 2021;182:1554-81. doi: 10.1016/j.ijbiomac.2021.05.119, PMID 34029581.

Jedvert K, Heinze T. Cellulose modification and shaping a review. J Polym Eng. 2017;37(9):845-60. doi: 10.1515/polyeng-2016-0272.

Siepmann J, Peppas NA. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv Drug Deliv Rev. 2001;48(2-3):139-57. doi: 10.1016/s0169-409x(01)00112-0, PMID 11369079.

Pourmadadi M, Rahmani E, Shamsabadipour A, Samadi A, Esmaeili J, Arshad R. Novel carboxymethyl cellulose-based nanocomposite: a promising biomaterial for biomedical applications. Process Biochem. 2023;130:211-26. doi: 10.1016/j.procbio.2023.03.033.

Paria A, Rai VK. The fate of carboxymethyl cellulose as a polymer of pharmaceutical importance. biolsciences. 2022;2(2):204-15. doi: 10.55006/biolsciences.2022.2204.

Rahman MS, Hasan MS, Nitai AS, Nam S, Karmakar AK, Ahsan MS. Recent developments of carboxymethyl cellulose. Polymers. 2021;13(8):1345. doi: 10.3390/polym13081345, PMID 33924089.

Arca HC, Mosquera Giraldo LI, BI V, XU D, Taylor LS, Edgar KJ. Pharmaceutical applications of cellulose ethers and cellulose ether esters. Biomacromolecules. 2018;19(7):2351-76. doi: 10.1021/acs.biomac.8b00517, PMID 29869877.

Gunduz O, Ahmad Z, Stride E, Edirisinghe M. Continuous generation of ethyl cellulose drug delivery nanocarriers from microbubbles. Pharm Res. 2013;30(1):225-37. doi: 10.1007/s11095-012-0865-7, PMID 22956171.

Rani AP, Archana N, Teja PS, Vikas PM, Kumar MS, Sekaran CB. Formulation and evaluation of orodispersible metformin tablets: a comparative study on isphagula husk and cross povidone as superdisintegrants. Int J Appl Pharm. 2010;2(3):15-21.

Abdel Halim ES. Chemical modification of cellulose extracted from sugarcane bagasse: preparation of hydroxyethyl cellulose. Arab J Chem. 2014;7(3):362-71. doi: 10.1016/j.arabjc.2013.05.006.

Bekaroglu MG, Isci Y, Isci S. Colloidal properties and in vitro evaluation of hydroxy ethyl cellulose coated iron oxide particles for targeted drug delivery. Mater Sci Eng C Mater Biol Appl. 2017;78:847-53. doi: 10.1016/j.msec.2017.04.030, PMID 28576058.

Mianehrow H, Afshari R, Mazinani S, Sharif F, Abdouss M. Introducing a highly dispersed reduced graphene oxide nano biohybrid employing chitosan/hydroxyethyl cellulose for controlled drug delivery. Int J Pharm. 2016;509(1-2):400-7. doi: 10.1016/j.ijpharm.2016.06.015, PMID 27286635.

Abdel Halim ES, Al Deyab SS. Utilization of hydroxypropyl cellulose for green and efficient synthesis of silver nanoparticles. Carbohydr Polym. 2011;86(4):1615-22. doi: 10.1016/j.carbpol.2011.06.072.

Lee BJ, Ryu SG, Cui JH. Formulation and release characteristics of hydroxypropyl methylcellulose matrix tablet containing melatonin. Drug Dev Ind Pharm. 1999;25(4):493-501. doi: 10.1081/DDC-100102199, PMID 10194604.

Takeuchi Y, Umemura K, Tahara K, Takeuchi H. Formulation design of hydroxypropyl cellulose films for use as orally disintegrating dosage forms. J Drug Deliv Sci Technol. 2018 Aug;46:93-100. doi: 10.1016/j.jddst.2018.05.002.

Kumar V, Yang D. Oxidized cellulose esters: I. Preparation and characterization of oxidized cellulose acetates a new class of biodegradable polymers. J Biomater Sci Polym Ed. 2002;13(3):273-86. doi: 10.1163/156856202320176529, PMID 12102594.

Nosar MN, Salehi M, Ghorbani S, Beiranvand SP, Goodarzi A, Azami M. Characterization of wet electrospun cellulose acetate based 3-dimensional scaffolds for skin tissue engineering applications: influence of cellulose acetate concentration. Cellulose. 2016;23(5):3239-48. doi: 10.1007/s10570-016-1026-7.

Dos Santos AE, Dos Santos FV, Freitas KM, Pimenta LP, De Oliveira Andrade L, Marinho TA. Cellulose acetate nanofibers loaded with crude annatto extract: preparation characterization and in vivo evaluation for potential wound healing applications. Mater Sci Eng C Mater Biol Appl. 2021 Jan;118:111322. doi: 10.1016/j.msec.2020.111322, PMID 33254960.

Wsoo MA, Shahir S, Mohd Bohari SP, Nayan NH, Razak SI. A review on the properties of electrospun cellulose acetate and its application in drug delivery systems: a new perspective. Carbohydr Res. 2020;491:107978. doi: 10.1016/j.carres.2020.107978, PMID 32163784.

Al Jbour ND, Beg MD, Gimbun J, Alam AK. An overview of chitosan nanofibers and their applications in the drug delivery process. Curr Drug Deliv. 2019;16(4):272-94. doi: 10.2174/1567201816666190123121425, PMID 30674256.

Rubentheren V, Ward TA, Chee CY, Nair P. Physical and chemical reinforcement of chitosan film using nanocrystalline cellulose and tannic acid. Cellulose. 2015;22(4):2529-41. doi: 10.1007/s10570-015-0650-y.

Karimian A, Yousefi B, Sadeghi F, Feizi F, Najafzadehvarzi H, Parsian H. Synthesis of biocompatible nanocrystalline cellulose against folate receptors as a novel carrier for targeted delivery of doxorubicin. Chem Biol Interact. 2022 Jan 5;351:109731. doi: 10.1016/j.cbi.2021.109731, PMID 34728188.

Thomas P, Duolikun T, Rumjit NP, Moosavi S, Lai CW, Bin Johan MR. Comprehensive review on nanocellulose: recent developments challenges and future prospects. J Mech Behav Biomed Mater. 2020;110:103884. doi: 10.1016/j.jmbbm.2020.103884, PMID 32957191.

Rana AK, Thakur VK. Impact of physic-chemical properties of nanocellulose on rheology of aqueous suspensions and its utility in multiple fields: a review. Vinyl Additive Technology. 2023;29(4):617-48. doi: 10.1002/vnl.22006.

Zhao X, Bhagia S, Gomez Maldonado D, Tang X, Wasti S, LU S. Bioinspired design toward nanocellulose based materials. Mater Today. 2023;66:409-30. doi: 10.1016/j.mattod.2023.04.010.

Samarasekara AM, Kumara SP, Madhusanka AJ, Amarasinghe DA, Karunanayake L. Study of thermal and mechanical properties of microcrystalline cellulose and nanocrystalline cellulose based thermoplastic material. In: Moratuwa Engineering Research Conference (MERCon); 2018. doi: 10.1109/MERCon.2018.8421906.

Flauzino Neto WP, Mariano M, Da Silva IS, Silverio HA, Putaux JL, Otaguro H. Mechanical properties of natural rubber nanocomposites reinforced with high aspect ratio cellulose nanocrystals isolated from soy hulls. Carbohydr Polym. 2016 Nov 20;153:143-52. doi: 10.1016/j.carbpol.2016.07.073, PMID 27561481.

Cranston ED, Gray DG. Morphological and optical characterization of polyelectrolyte multilayers incorporating nanocrystalline cellulose. Biomacromolecules. 2006;7(9):2522-30. doi: 10.1021/bm0602886, PMID 16961313.

Gan PG, Sam ST, Abdullah MF, Omar MF. Thermal properties of nanocellulose reinforced composites: a review. J Appl Polym Sci. 2020;137(11):48544. doi: 10.1002/app.48544.

Omran AA, Mohammed AA, Sapuan SM, Ilyas RA, Asyraf MR, Rahimian Koloor SS. Micro and nanocellulose in polymer composite materials: a review. Polymers. 2021;13(2):231. doi: 10.3390/polym13020231, PMID 33440879.

Karimian A, Parsian H, Majidinia M, Rahimi M, Mir SM, Samadi Kafil H. Nanocrystalline cellulose: preparation physicochemical properties and applications in drug delivery systems. Int J Biol Macromol. 2019 Jul 15;133:850-9. doi: 10.1016/j.ijbiomac.2019.04.117, PMID 31002901.

Julkapli NM, Bagheri S. Progress on nanocrystalline cellulose biocomposites. React Funct Polym. 2017 Mar;112:9-21. doi: 10.1016/j.reactfunctpolym.2016.12.013.

Habibi Y, Lucia LA, Rojas OJ. Cellulose nanocrystals: chemistry self-assembly and applications. Chem Rev. 2010;110(6):3479-500. doi: 10.1021/cr900339w, PMID 20201500.

Abdul Khalil HP, Davoudpour Y, Islam MN, Mustapha A, Sudesh K, Dungani R. Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohydr Polym. 2014 Jan;99:649-65. doi: 10.1016/j.carbpol.2013.08.069, PMID 24274556.

Abitbol T, Rivkin A, Cao Y, Nevo Y, Abraham E, Ben Shalom T. Nanocellulose a tiny fiber with huge applications. Curr Opin Biotechnol. 2016;39:76-88. doi: 10.1016/j.copbio.2016.01.002, PMID 26930621.

Chen Y, Zhang Y, Zhang H, Shen G, Zhang Z. Biocompatibility of nanocellulose based materials. J Nanomater. 2018.

Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D. Nanocelluloses: a new family of nature based materials. Angew Chem Int Ed Engl. 2011;50(24):5438-66. doi: 10.1002/anie.201001273, PMID 21598362.

De Souza Lima MM, Borsali R. Rodlike cellulose microcrystals: structure properties and applications. Macromol Rapid Commun. 2004;25(7):771-87. doi: 10.1002/marc.200300268.

Hubbe MA, Rojas OJ, Lucia LA, Sain M. Cellulosic nanocomposites. A review. Bio Resources. 2008;3(3):929-80. doi: 10.15376/biores.3.3.929-980.

Lin N, Huang J, Dufresne A. Preparation properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review. Nanoscale. 2012;4(11):3274-94. doi: 10.1039/c2nr30260h, PMID 22565323.

Capadona JR, Van Den Berg OV, Capadona LA, Schroeter M, Rowan SJ, Tyler DJ. A versatile approach for the processing of polymer nanocomposites with self-assembled nanofibre templates. Nat Nanotechnol. 2007;2(12):765-9. doi: 10.1038/nnano.2007.379, PMID 18654428.

Peresin MS, Habibi Y, Zoppe JO, Pawlak JJ, Rojas OJ. Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: manufacture and characterization. Biomacromolecules. 2010;11(3):674-81. doi: 10.1021/bm901254n, PMID 20088572.

Ghajarieha A, Habibib S, Talebianb A. Biomedical applications of nanofibers. Russ J Appl Chem. 2021 Oct 5;94(7):847-72. doi: 10.1134/S1070427221070016.

Wadhwa A, Mathura V, Lewis SA. Emerging novel nanopharmaceuticals for drug delivery. Asian J Pharm Clin Res. 2018;11(7):35-42. doi: 10.22159/ajpcr.2018.v11i7.25149.

Turbak AF, Snyder FW, Sandberg KR. Microfibrillated cellulose a new cellulose product: properties uses and commercial potential. Int J Appl Polym Sci. 1983;37(2).

Czaikoski A, Da Cunha RL, Menegalli FC. Rheological behavior of cellulose nanofibers from cassava peel obtained by combination of chemical and physical processes. Carbohydr Polym. 2020;248:116744. doi: 10.1016/j.carbpol.2020.116744, PMID 32919552.

Khawas P, Deka SC. Isolation and characterization of cellulose nanofibers from culinary banana peel using high-intensity ultrasonication combined with chemical treatment. Carbohydr Polym. 2016 Feb 10;137:608-16. doi: 10.1016/j.carbpol.2015.11.020, PMID 26686170.

Okahisa Y, Furukawa Y, Ishimoto K, Narita C, Intharapichai K, Ohara H. Comparison of cellulose nanofiber properties produced from different parts of the oil palm tree. Carbohydr Polym. 2018;198:313-9. doi: 10.1016/j.carbpol.2018.06.089, PMID 30093004.

Chirayil CJ, Joy J, Mathew L, Mozetic M, Koetz J, Thomas S. Isolation and characterization of cellulose nanofibrils from Helicteres isora plant. Ind Crops Prod. 2014;59:27-34. doi: 10.1016/j.indcrop.2014.04.020.

Kouadri I, Satha H. Extraction and characterization of cellulose and cellulose nanofibers from Citrullus colocynthis seeds. Ind Crops Prod. 2018;124:787-96. doi: 10.1016/j.indcrop.2018.08.051.

Ifuku S, Adachi M, Morimoto M, Saimoto H. Fabrication of cellulose nanofibers from parenchyma cells of pears and apples. Sen’i Gakkaishi. 2011;67(4):86-90. doi: 10.2115/fiber.67.86.

Fall AB, Lindstrom SB, Sundman O, Odberg L, Wagberg L. Colloidal stability of aqueous nanofibrillated cellulose dispersions. Langmuir. 2011;27(18):11332-8. doi: 10.1021/la201947x, PMID 21834530.

Paakko M, Ankerfors M, Kosonen H, Nykanen A, Ahola S, Osterberg M. Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules. 2007;8(6):1934-41. doi: 10.1021/bm061215p, PMID 17474776.

Shibata I, Isogai A. Nitroxide mediated oxidation of cellulose using TEMPO derivatives: HPSEC and NMR analyses of the oxidized products. Cellulose. 2003;10(4):335-41. doi: 10.1023/A:1027330409470.

Ul Islam M, Khan S, Ullah MW, Park JK. Bacterial cellulose composites: synthetic strategies and multiple applications in biomedical and electro-conductive fields. Biotechnol J. 2015;10(12):1847-61. doi: 10.1002/biot.201500106, PMID 26395011.

Espinosa E, Rol F, Bras J, Rodriguez A. Production of lignocellulose nanofibers from wheat straw by different fibrillation methods. Comparison of its viability in cardboard recycling process. J Clean Prod. 2019 Dec 1;239:118083. doi: 10.1016/j.jclepro.2019.118083.

De Campos A, Correa AC, Cannella D, De M Teixeira EM, Marconcini JM, Dufresne A. Obtaining nanofibers from curaua and sugarcane bagasse fibers using enzymatic hydrolysis followed by sonication. Cellulose. 2013;20(3):1491-500. doi: 10.1007/s10570-013-9909-3.

Kumari P, Pathak G, Gupta R, Sharma D, Meena A. Cellulose nanofibers from lignocellulosic biomass of lemongrass using enzymatic hydrolysis: characterization and cytotoxicity assessment. Daru. 2019;27(2):683-93. doi: 10.1007/s40199-019-00303-1, PMID 31654377.

De Simone JM, Samulski ET, Rolland JP. Methods and apparatus for continuous liquid interface production with rotation. U.S. Patent 10589512B2; 2020.

Chang PR, Lin N, Huang J, Dufresne A. Polysaccharide based nanocrystals: chemistry and applications. Hoboken: John Wiley & Sons; 2014.

Miguel SP, Figueira DR, Simoes D, Ribeiro MP, Coutinho P, Ferreira P. Electrospun polymeric nanofibres as wound dressings: a review. Colloids Surf B Biointerfaces. 2018 Sep 1;169:60-71. doi: 10.1016/j.colsurfb.2018.05.011, PMID 29747031.

Ambekar RS, Kandasubramanian B. Advancements in nanofibers for wound dressing: a review. Eur Polym J. 2019;117:304-36. doi: 10.1016/j.eurpolymj.2019.05.020.

Ranby BG. Fibrous macromolecular systems cellulose and muscle the colloidal properties of cellulose micelles. Discuss Faraday Soc. 1951;11:158-64. doi: 10.1039/DF9511100158.

Basile R, Bergamonti L, Fernandez F, Graiff C, Haghighi A, Isca C. Bio inspired consolidants derived from crystalline nanocellulose for decayed wood. Carbohydr Polym. 2018 Dec 15;202:164-71. doi: 10.1016/j.carbpol.2018.08.132, PMID 30286989.

Fillat U, Wicklein B, Martin Sampedro R, Ibarra D, Ruiz Hitzky E, Valencia C. Assessing cellulose nanofiber production from olive tree pruning residue. Carbohydr Polym. 2018;179:252-61. doi: 10.1016/j.carbpol.2017.09.072, PMID 29111049.

Kian LK, Saba N, Jawaid M, Alothman OY, Fouad H. Properties and characteristics of nanocrystalline cellulose isolated from olive fiber. Carbohydr Polym. 2020;241:116423. doi: 10.1016/j.carbpol.2020.116423, PMID 32507177.

Miller AF, Donald AM. Imaging of anisotropic cellulose suspensions using environmental scanning electron microscopy. Biomacromolecules. 2003;4(3):510-7. doi: 10.1021/bm0200837, PMID 12741764.

Kimura F, Kimura T, Tamura M, Hirai A, Ikuno M, Horii F. Magnetic alignment of the chiral nematic phase of a cellulose microfibril suspension. Langmuir. 2005;21(5):2034-7. doi: 10.1021/la0475728, PMID 15723507.

Garcia De Rodriguez NL, Thielemans W, Dufresne A. Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites. Cellulose. 2006;13(3):261-70. doi: 10.1007/s10570-005-9039-7.

Roman M, Winter WT. Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules. 2004;5(5):1671-7. doi: 10.1021/bm034519+, PMID 15360274.

Pranger L, Tannenbaum R. Biobased nanocomposites prepared by in situ polymerization of furfuryl alcohol with cellulose whiskers or montmorillonite clay. Macromolecules. 2008;41(22):8682-7. doi: 10.1021/ma8020213.

Wang N, Ding E, Cheng R. Preparation and liquid crystalline properties of spherical cellulose nanocrystals. Langmuir. 2008;24(1):5-8. doi: 10.1021/la702923w, PMID 18047382.

Elazzouzi Hafraoui S, Nishiyama Y, Putaux JL, Heux L, Dubreuil F, Rochas C. The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules. 2008;9(1):57-65. doi: 10.1021/bm700769p, PMID 18052127.

Zhou X, Chang C, Zhou Y, Sun L, Xiang H, Zhao S. A comparison study to investigate the effect of the drug loading site on its delivery efficacy using double hydrophilic block copolymer based prodrugs. J Mater Chem B. 2017;5(23):4443-54. doi: 10.1039/c7tb00261k, PMID 32263972.

Arai K, Horikawa Y, Shikata T. Transport properties of commercial cellulose nanocrystals in aqueous suspension prepared from chemical pulp via sulfuric acid hydrolysis. ACS Omega. 2018;3(10):13944-51. doi: 10.1021/acsomega.8b01760, PMID 30411054.

Dong XM, Revol JF, Gray DG. Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose. 1998;5(1):19-32. doi: 10.1023/A:1009260511939.

Qin ZY, Tong GL, Chin YC, Zhou JC. Preparation of ultrasonic assisted high carboxylate content cellulose nanocrystals by TEMPO oxidation. Bioresources. 2011;6(2):1136-46. doi: 10.15376/biores.6.2.1136-1146.

Leung AC, Hrapovic S, Lam E, Liu Y, Male KB, Mahmoud KA. Characteristics and properties of carboxylated cellulose nanocrystals prepared from a novel one-step procedure. Small. 2011;7(3):302-5. doi: 10.1002/smll.201001715, PMID 21294255.

Jackson JK, Letchford K, Wasserman BZ, Ye L, Hamad WY, Burt HM. The use of nanocrystalline cellulose for the binding and controlled release of drugs. Int J Nanomedicine. 2011;6:321-30. doi: 10.2147/IJN.S16749, PMID 21383857.

Burt HM, Jackson JK, Hamad WY. U. S. Patent Application No. 13/885. Vol. 503; 2014.

Emara LH, El Ashmawy AA, Taha NF, El Shaffei KA, Mahdey ES, El kholly HK. Nano crystalline cellulose as a novel tablet excipient for improving solubility and dissolution of meloxicam. J App Pharm Sci. 2016;6(2):32-43. doi: 10.7324/JAPS.2016.60205.

Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A. Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules. 2009;10(1):162-5. doi: 10.1021/bm801065u, PMID 19055320.

Kolakovic R, Peltonen L, Laukkanen A, Hirvonen J, Laaksonen T. Nanofibrillar cellulose films for controlled drug delivery. Eur J Pharm Biopharm. 2012;82(2):308-15. doi: 10.1016/j.ejpb.2012.06.011, PMID 22750440.

Kolakovic R, Peltonen L, Laaksonen T, Putkisto K, Laukkanen A, Hirvonen J. Spray dried cellulose nanofibers as novel tablet excipient. AAPS Pharm Sci Tech. 2011;12(4):1366-73. doi: 10.1208/s12249-011-9705-z, PMID 22005956.

Gao J, LI Q, Chen W, Liu Y, YU H. Self assembly of nanocellulose and indomethacin into hierarchically ordered structures with high encapsulation efficiency for sustained release applications. Chem Plus Chem. 2014;79(5):725-31. doi: 10.1002/cplu.201300434.

Cervin NT, Johansson E, Larsson PA, Wagberg L. Strong water durable and wet resilient cellulose nanofibril stabilized foams from oven drying. ACS Appl Mater Interfaces. 2016;8(18):11682-9. doi: 10.1021/acsami.6b00924, PMID 27070532.

Habel H, Andersson H, Olsson A, Olsson E, Larsson A, Sarkka A. Characterization of pore structure of polymer blended films used for controlled drug release. J Control Release. 2016;222:151-8. doi: 10.1016/j.jconrel.2015.12.011, PMID 26686080.

Guo T, Pei Y, Tang K, He X, Huang J, Wang F. Mechanical and drug release properties of alginate beads reinforced with cellulose. J Appl Polym Sci. 2017;134(8). doi: 10.1002/app.44495.

Patil MD, Patil VD, Sapre AA, Ambone TS, Torris AT, Shukla PG. Tuning controlled release behavior of starch granules using nanofibrillated cellulose derived from waste sugarcane bagasse. ACS Sustainable Chem Eng. 2018;6(7):9208-17. doi: 10.1021/acssuschemeng.8b01545.

Supramaniam J, Adnan RH, Mohd Kaus NH, Bushra R. Magnetic nanocellulose alginate hydrogel beads as potential drug delivery system. Int J Biol Macromol. 2018;118(A):640-8. doi: 10.1016/j.ijbiomac.2018.06.043, PMID 29894784.

Thomas B, Raj MC, B AK, H RM, Joy J, Moores A, Drisko GL, Sanchez C. Nanocellulose a versatile green platform: from biosources to materials and their applications. Chem Rev. 2018;118(24):11575–625. doi: 10.1021/acs.chemrev.7b00627.

Hivechi A, Bahrami SH, Siegel RA. Drug release and biodegradability of electrospun cellulose nanocrystal reinforced polycaprolactone. Mater Sci Eng C Mater Biol Appl. 2019;94:929-37. doi: 10.1016/j.msec.2018.10.037, PMID 30423781.

Jawaid M, Mohammad F, Editors. Nanocellulose and nanohydrogel matrices: biotechnological and biomedical applications. John Wiley & Sons; 2017.

Dhiman S, Singh TG, Rehni AK. Transdermal patches: a recent approach to new drug delivery system. Int J Pharm Pharm Sci. 2011;3(5):26-34.

Published

07-03-2025

How to Cite

ALJBOUR, N. D., ALKHADER, E. A., & D. BEG, M. (2025). AN OVERVIEW OF NANO-CRYSTALLINE CELLULOSE NANOFIBERS AND THEIR APPLICATIONS IN DRUG DELIVERY. International Journal of Applied Pharmaceutics, 17(2), 53–64. https://doi.org/10.22159/ijap.2025v17i2.52561

Issue

Section

Review Article(s)

Similar Articles

<< < 7 8 9 10 11 > >> 

You may also start an advanced similarity search for this article.