SIMULTANEOUS DETERMINATION OF GLYCERINE AND DEG IN GLYCERINE RAW MATERIAL USING FT-IR SPECTROSCOPY AND MULTIVARIATE CALIBRATION METHODS

Authors

  • SAFWAN M. OBEIDAT Chemistry Department, Faculty of Science, Yarmouk University, Irbid-21163, Jordan
  • AYMAN Y. HAMMOUDEH Chemistry Department, Faculty of Science, Yarmouk University, Irbid-21163, Jordan https://orcid.org/0000-0003-0037-2157

DOI:

https://doi.org/10.22159/ijap.2025v17i2.52729

Keywords:

Glycerine, Diethylene glycol, FTIRs, PCA, PCR, PLS

Abstract

Objective: This study aims to determine reliably the concentration of Diethylene Glycol (DEG) in glycerine raw material in a simple and rapid manner using Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy coupled with chemometric methods.

Methods: for the first time, the current work employs multivariate data analysis tools and FTIR spectroscopy for the simultaneous determination of glycerine and DEG. Binary mixtures of the two substances were prepared and categorized into calibration, validation and test samples. The DEG ratio in these samples ranged from 1 to 30%. The FTIR spectra were recorded for all samples in the range 3700-815 cm-1, and spectral data for each group of samples were used for Principal Component Analysis (PCA), Principal Component Regression (PCR) and Partial Least Square (PLS) applications.

Results: In the case of PCA application, a 100% successful discrimination among pure glycerine, DEG and mixed samples was achieved. Semi-quantitative determination of both substances was also possible using PC1 and PC2, accounting for about 99% of the variation in the data set. When using the PCR algorithm, quantitative analysis of the two substances was successfully achieved with an average recovery percent of 98.32±0.19% for glycerine and 99.89±5.7% for DEG. On the other hand, the mean recovery percent values based on the PLS model were 101.37±0.13% and 103.26±3.2% for glycerine and DEG, respectively.

Conclusion: Distinguishing pure samples of both analytes was achieved successfully using FTIR spectroscopy and PCA for data analysis. On the other hand, the quantification of DEG in glycerine was very satisfactory upon analyzing the spectroscopic data using PCR and PLS algorithms. FTIR spectroscopy coupled with PCA, PCR and PLS has, thus, been shown to be of great potential to detect the adulteration of glycerine with DEG.

References

Alfred S, Coleman P, Harris D, Wigmore T, Stachowski E, Graudins A. Delayed neurologic sequelae resulting from epidemic diethylene glycol poisoning. Clin Toxicol (Phila). 2005;43(3):155-9. doi: 10.1081/CLT-57875, PMID 15902788.

Testing of glycerin, propylene glycol, maltitol solution, hydrogenated starch hydrolysate, sorbitol solution, and other high-risk drug components for diethylene glycol and ethylene glycol, guidance for industry. United States Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER); 2023.

WHO. WHO urges action to protect children from contaminated medicines, World Health Organization; 2023. Available from: https://www.who.int/news/item/23-01-2023-who-urges-action-to-protect-children-from-contaminated-medicines. [Last accessed on 01 Nov 2024].

Schep LJ, Slaughter RJ, Temple WA, Beasley DM. Diethylene glycol poisoning. Clin Toxicol (Phila). 2009;47(6):525-35. doi: 10.1080/15563650903086444, PMID 19586352.

Blecher L, Mercill A. Progress in pharmaceutical excipients. Pharm Technol. 1998;22:50-4.

Ahmed MK, McLeod MP, Nezivar J, Giuliani AW. Fourier transform infrared and near-infrared spectroscopic methods for the detection of toxic diethylene glycol (DEG) contaminant in glycerin based cough syrup. Spectroscopy. 2010;24(6):601-8. doi: 10.1155/2010/608749.

Barr DB, Barr JR, Weerasekera G, Wamsley J, Kalb SR, Sjodin A. Identification and quantification of diethylene glycol in pharmaceuticals implicated in poisoning epidemics: an historical laboratory perspective. J Anal Toxicol. 2007;31(6):295-303. doi: 10.1093/jat/31.6.295, PMID 17725874.

Ferrari LA, Giannuzzi L. Clinical parameters, postmortem analysis and estimation of lethal dose in victims of a massive intoxication with diethylene glycol. Forensic Sci Int. 2005;153(1):45-51. doi: 10.1016/j.forsciint.2005.04.038, PMID 15979833.

WHO. Working. Tests for diethylene glycol and ethylene glycol liq prep for oral use; 2023.

Holloway G, Maheswaran R, Leeks A, Bradby S, Wahab S. Screening method for ethylene glycol and diethylene glycol in glycerin-containing products. J Pharm Biomed Anal. 2010;51(3):507-11. doi: 10.1016/j.jpba.2009.08.025, PMID 19782491.

Matusik JE, Eilers PP, Waldron EM, Conrad SM, Sphon JA. Confirmation of identities of propylene and ethylene glycols in anchovies by tandem mass spectrometry. J AOAC Int. 1993;76(6):1344-7. doi: 10.1093/jaoac/76.6.1344, PMID 8286973.

Maurer H, Kessler C. Identification and quantification of ethylene glycol and diethylene glycol in plasma using gas chromatography-mass spectrometry. Arch Toxicol. 1988;62(1):66-9. doi: 10.1007/BF00316260, PMID 3190459.

Varlet V, Farsalinos K, Augsburger M, Thomas A, Etter JF. Toxicity assessment of refill liquids for electronic cigarettes. Int J Environ Res Public Health. 2015;12(5):4796-815. doi: 10.3390/ijerph120504796, PMID 25941845.

Castle L, Cloke HR, Startin JR, Gilbert J. Gas chromatographic determination of monoethylene glycol and diethylene glycol in chocolate packaged in regenerated cellulose film. J Assoc Off Anal Chem. 1988;71(3):499-502. doi: 10.1093/jaoac/71.3.499, PMID 3391947.

Brooks JB, Basta MT, Alley CC, Holler JS, El Kholy AM. Identification of diethylene glycol in sera from Egyptian children by frequency-pulsed electron-capture gas-liquid chromatography. J Chromatogr. 1984;309(2):269-77. doi: 10.1016/0378-4347(84)80034-1, PMID 6480778.

Baffi P, Elneser S, Baffi M, De Melin M, Baffi P, Elneser S. Quantitative determination of diethylene glycol contamination in pharmaceutical products. J AOAC Int. 2000;83(4):793-801. doi: 10.1093/jaoac/83.4.793, PMID 10995105.

Caldeira LR, Madureira FD, Maia TF, Muller CV, Fernandes C. Simultaneous quantification of ethylene glycol and diethylene glycol in beer by gas chromatography coupled to mass spectrometry. Food Chem. 2021;346:128871. doi: 10.1016/j.foodchem.2020.128871, PMID 33360845.

Monerah AA, Yahya MA, Fahad SA, Norah HA, Sultan KA, Shaikah FA. A selective gas chromatography-tandem mass spectrometry method for quantitation of ethylene and diethylene glycol in paediatric syrups. Heliyon. 2024;10(7):e27559. doi: 10.1016/j.heliyon.2024.e27559.

Kenyon AS, Shi X, Wang Y, Ng WH, Prestridge R, Sharp K. Simple, at-site detection of diethylene glycol/ethylene glycol contamination of glycerin and glycerin-based raw materials by thin-layer chromatography. J AOAC Int. 1998;81(1):44-50. doi: 10.1093/jaoac/81.1.44, PMID 9477561.

John AMM. Determination of toxic diethylene glycol in toothpastes in dares salaam by high-performance thin layer chromatography and colorimetric methods, Tanz. J Sci. 2018;44(2):117-27.

Ghanem MP. Detection of diethylene glycol in glycerin and propylene glycol by using high performance thin layer chromatography HPTLC. IOSRPHR. 2011;1(1):29-34. doi: 10.9790/3013-01102934.

DIONEX, Application Note 246. Determination of ethylene glycol and diethylene glycol in a sorbitol solution; 2016. Thermofisher. Available from: https://assets.com/TFS-assets/CMD/application-notes/AN-246-IC-ethylene-diethylene-glycol-sorbitol-LPN2505-EN.pdf. [Last accessed on 30 Jan 2025].

Zhou T, Zhang H, Duan G. Simultaneous determination of diethylene glycol and propylene glycol in pharmaceutical products by HPLC after precolumn derivatization with p-toluenesulfonyl isocyanate. J Sep Sci. 2007;30(16):2620-7. doi: 10.1002/jssc.200700097, PMID 17880028.

Wu J, Yuan J, Liu Q, Tang F, Ding L, Tan J. New derivatizing reagent for analysis of diethylene glycol by HPLC with fluorescence detection. J Sep Sci. 2008;31(22):3857-63. doi: 10.1002/jssc.200800433, PMID 19065617.

Obeidat SM, Hammoudeh AY, Mahmoud A. Identification and quantification of diethylene glycol contamination in glycerine raw material. Spectrosc Lett. 2019;52(1):60-5. doi: 10.1080/00387010.2018.1556220.

Hammoudeh AY, Obeidat SM, Abboushi EKh, Mahmoud AM. FT-IR spectroscopy for the detection of diethylene glycol (DEG) contaminant in glycerin-based pharmaceutical products and food supplements. Acta Chim Slov. 2020;67(2):530-6. doi: 10.17344/acsi.2019.5553, PMID 33855552.

Prayoga A, Windarsih A, Apriyana W, Riswanto FD, Istyastono EP. Authentication of grape seed face oil using FTIR spectroscopy combined with chemometrics techniques. Int J App Pharm. 2024;16(5):220-4. doi: 10.22159/ijap.2024v16i5.51525.

Pravallika Burela VS, Nammi UR, Mandalemula P. New diffuse reflectance infrared Fourier transform spectroscopy for the estimation of tramadol hydrochloride capsules. Int J Pharm Pharm Sci. 2023;15(1):22-6. doi: 10.22159/ijpps.2023v15i1.46464.

Ahda M, Safitri A. Development of lard detection in crude palm oil (CPO) using FTIR combined with chemometrics analysis. Int J Pharm Pharm Sci. 2016;8(12):307-9. doi: 10.22159/ijpps.2016v8i12.14743.

Li X, Arzhantsev S, Kauffman JF, Spencer JA. Detection of diethylene glycol adulteration in propylene glycol-Method validation through a multi-instrument collaborative study. J Pharm Biomed Anal. 2011;54(5):1001-6. doi: 10.1016/j.jpba.2010.11.042, PMID 21177057.

Fulgencio AC, Resende GA, Teixeira MC, Botelho BG, Sena MM. Screening method for the rapid detection of diethylene glycol in beer based on chemometrics and portable near-infrared spectroscopy. Food Chem. 2022;391:133258. doi: 10.1016/j.foodchem.2022.133258, PMID 35640334.

Bystrzanowska M, Tobiszewski M. Chemometrics for selection, prediction, and classification of sustainable solutions for green chemistry-a review. Symmetry. 2020;12(12):2055. doi: 10.3390/sym12122055.

Published

07-03-2025

How to Cite

OBEIDAT, S. M., & HAMMOUDEH, A. Y. (2025). SIMULTANEOUS DETERMINATION OF GLYCERINE AND DEG IN GLYCERINE RAW MATERIAL USING FT-IR SPECTROSCOPY AND MULTIVARIATE CALIBRATION METHODS. International Journal of Applied Pharmaceutics, 17(2), 293–298. https://doi.org/10.22159/ijap.2025v17i2.52729

Issue

Section

Original Article(s)

Similar Articles

<< < 5 6 7 8 9 > >> 

You may also start an advanced similarity search for this article.