ANTI-BACTERIAL ACTIVITY OF CHITOSAN NANOPARTICLES GEL FROM CRAB SHELL WASTE (PORTUNUS PELAGICUS) AGAINST STAPHYLOCOCCUS AUREUS AND ESCHERICHIA COLI BACTERIA
DOI:
https://doi.org/10.22159/ijap.2025v17i3.52745Keywords:
Chitosan nanoparticles gel, Portunus pelagicus, Antibacterial activity, Staphylococcus aureus, Escherichia coliAbstract
Objective: This study aims to develop a chitosan nanoparticle gel from crab shell waste (Portunus pelagicus) by testing the anti-bacterial activity against Staphylococcus aureus and Escherichia coli.
Methods: Chitosan nanoparticles gel formulation was made using spontaneous method. The gel formulation used 1% concentration of chitosan nanoparticles. Optimization of gel base and formula, including organoleptic test, homogeneity, pH determination, adhesion, spreadability and viscosity test were evaluated. Anti-bacterial activity was determined against Staphylococcus aureus and Escherichia coli bacteria.
Results: The results showed that the formulation produced a stable gel with semisolid characteristics without any coarse grains, clear white and homogeneous. The pH of the formula was 5.94-6.46 and included the type of Oil in Water (O/W) gel. The formula showed adhesion of 1.05-1.97 seconds, spreadability of 5.33-5.00 cm and viscosity ranging from 7444-7792 cp. Chitosan nanoparticles gel showed the highest anti-bacterial activity with the zone of inhibition on Staphylococcus aureus of 15.37±1.34 mm and Escherichia coli of 18.33±0.25 mm with 250 mg chitosan nanoparticles gel.
Conclusion: Portunus pelagicus shell waste chitosan nanoparticles produced a stable gel and showed moderate anti-bacterial activity with the highest inhibition zone at 250 mg.
References
Manasa MT, Ramanamurthy KV, Bhupathi PA. Electrospun nanofibrous wound dressings: a review on chitosan composite nanofibers as potential wound dressings. Int J App Pharm. 2023;15(4):1-11. doi: 10.22159/ijap.2023v15i4.47912.
Negm NA, Hefni HH, Abd Elaal AA, Badr EA, Abou Kana MT. Advancement on modification of chitosan biopolymer and its potential applications. Int J Biol Macromol. 2020;152:681-702. doi: 10.1016/j.ijbiomac.2020.02.196, PMID 32084486.
Gozali D, Hudaya AR, Suharyani I. A review on chitosan-based materials as potential wound dressing materials. Int J App Pharm. 2022;14(4):27-32. doi: 10.22159/ijap.2022.v14s4.PP23.
Rinaudo M. Chitin and chitosan: properties and applications. Prog Polym Sci. 2006;31(7):603-32. doi: 10.1016/j.progpolymsci.2006.06.001.
Rodriguez Rodriguez R, Espinosa Andrews H, Velasquillo Martinez C, Garcia Carvajal ZY. Composite hydrogels based on gelatin chitosan and polyvinyl alcohol to biomedical applications: a review. International Journal of Polymeric Materials and Polymeric Biomaterials. 2020;69(1):1-20. doi: 10.1080/00914037.2019.1581780.
MA Z, Garrido Maestu A, Jeong KC. Application mode of action and in vivo activity of chitosan and its micro and nanoparticles as antimicrobial agents: a review. Carbohydr Polym. 2017 Nov 15;176:257-65. doi: 10.1016/j.carbpol.2017.08.082, PMID 28927606.
Divya K, Vijayan S, George TK, Jisha MS. Antimicrobial properties of chitosan nanoparticles: mode of action and factors affecting activity. Fibers Polym. 2017;18(2):221-30. doi: 10.1007/s12221-017-6690-1.
Divya K, Jisha MS. Chitosan nanoparticles preparation and applications. Environ Chem Lett. 2018;16(1):101-12. doi: 10.1007/s10311-017-0670-y.
Kassem A, Ayoub GM, Malaeb L. Anti-bacterial activity of chitosan nanocomposites and carbon nanotubes: a review. Sci Total Environ. 2019;668:566-76. doi: 10.1016/j.scitotenv.2019.02.446, PMID 30856567.
Rozman NA, Tong WY, Leong CR, Tan WN, Hasanolbasori MA, Abdullah SZ. Potential antimicrobial applications of chitosan nanoparticles (ChNP). J Microbiol Biotechnol. 2019;29(7):1009-13. doi: 10.4014/jmb.1904.04065, PMID 31288302.
Ahmed TA, Aljaeid BM. Preparation characterization and potential application of chitosan chitosan derivatives and chitosan metal nanoparticles in pharmaceutical drug delivery. Drug Des Dev Ther. 2016;10:483-507. doi: 10.2147/DDDT.S99651, PMID 26869768.
Vishwakarma A, Sriram P, Preetha SP, Tirumurugaan KG, Nagarajan, Pandian K. Synthesis and characterization of chitosan/TPP encapsulated curcumin nanoparticles and its anti-bacterial efficacy against colon bacteria. Int J Chem Stud. 2019;7(3):602-6.
Perinelli DR, Fagioli L, Campana R, Lam JK, Baffone W, Palmieri GF. Chitosan-based nanosystems and their exploited antimicrobial activity. Eur J Pharm Sci. 2018;117:8-20. doi: 10.1016/j.ejps.2018.01.046, PMID 29408419.
Kravanja G, Primozic M, Knez Z, Leitgeb M. Chitosan-based (Nano) materials for novel biomedical applications. Molecules. 2019;24(10):1960. doi: 10.3390/molecules24101960, PMID 31117310.
Supraja N, Thiruchenduran S, Prasad T. Synthesis and characterization of chitosan nanoparticles and evaluation of antimicrobial activity antioxidant activity. Adv Bioequiv Available. 2018;2(1):88-93. doi: 10.31031/ABB.2018.02.000526.
Mubarak Ali D, Lewis Oscar F, Gopinath V, Alharbi NS, Alharbi SA, Thajuddin N. An inhibitory action of chitosan nanoparticles against pathogenic bacteria and fungi and their potential applications as biocompatible antioxidants. Microb Pathog. 2018 Jan;114:323-7. doi: 10.1016/j.micpath.2017.11.043, PMID 29229504.
Wang W, Meng Q, LI Q, Liu J, Zhou M, Jin Z. Chitosan derivatives and their application in biomedicine. Int J Mol Sci. 2020;21(2):487. doi: 10.3390/ijms21020487, PMID 31940963.
Krishna KM, Swathi K, Nirmala U. A clinical comparative study on the healing efficacy of nanosilver and betadine in diabetic foot ulcers. Asian J Pharm Clin Res. 2024;17(12):110-3. doi: 10.22159/ajpcr.2024v17i12.53130.
Omoriyekomwan JE, Tahmasebi A, Dou J, Wang R, YU J. A review on the recent advances in the production of carbonnanotubes and carbon nanofibers via microwave-assisted pyrolysis of biomass. Fuel Process Technol. 2020 Apr;214:106686. doi: 10.1016/j.fuproc.2020.106686.
Shi K, Yan J, Lester E, WU T. Catalyst free synthesis of multiwalled carbon nanotubes via microwave-induced processing of biomass. Ind Eng Chem Res. 2014;53(39):15012-9. doi: 10.1021/ie503076n.
Ravikumar L, Velmurugan R, Vidiyala N, Sunkishala P, Teriveedhi VK. Nanotechnology driven therapeutics for liver cancer: clinical applications and pharmaceutical insights. Asian J Pharm Clin Res. 2025;18(2):8-26. doi: 10.22159/ajpcr.2025v18i2.53429.
Antman Passig M, Shefi O. Remote magnetic orientation of 3D collagen hydrogels for directed neuronal regeneration. Nano Lett. 2016;16(4):2567-73. doi: 10.1021/acs.nanolett.6b00131, PMID 26943183.
Arafa MG, El Kased RF, Elmazar MM. Thermoresponsive gels containing gold nanoparticles as smart anti-bacterial and wound healing agents. Sci Rep. 2018;8(1):13674. doi: 10.1038/s41598-018-31895-4, PMID 30209256.
Avci P, Erdem SS, Hamblin MR. Photodynamic therapy: one step ahead with self-assembled nanoparticles. J Biomed Nanotechnol. 2014;10(9):1937-52. doi: 10.1166/jbn.2014.1953, PMID 25580097.
Bellotti E, Schilling AL, Little SR, Decuzzi P. Injectable thermoresponsive hydrogels as drug delivery system for the treatment of central nervous system disorders: a review. J Control Release. 2021;329:16-35. doi: 10.1016/j.jconrel.2020.11.049, PMID 33259851.
Bertrand O, Gohy JF. Photo responsive polymers: synthesis and applications. Polym Chem. 2017;8(1):52-73. doi: 10.1039/C6PY01082B.
Joshi P, Nainwal N, Morris S, Jakhmola V. A review on recent advances on stimuli-based smart nanomaterials for drug delivery and biomedical application. Int J App Pharm. 2023;15(5):48-59. doi: 10.22159/ijap.2023v15i5.48186.
Torres Rosas R, Torres Gomez N, Moreno Rodriguez A, Garcia Contreras R, Argueta Figueroa L. Anti-inflammatory and anti-bacterial activity of the chitosan/chlorhexidine gel commercial preparation for postexodontia treatment: an in vitro study. Eur J Dent. 2020;14(3):397-403. doi: 10.1055/s-0040-1714453, PMID 32688408.
Garoy EY, Gebreab YB, Achila OO, Tekeste DG, Kesete R, Ghirmay R. Methicillin-resistant staphylococcus aureus (MRSA): prevalence and antimicrobial sensitivity pattern among patients a multicenter study in Asmara Eritrea. Can J Infect Dis Med Microbiol. 2019;2019:8321834. doi: 10.1155/2019/8321834, PMID 30881532.
Nurleni N, Firdiawan A, Rendowaty A, Kurniasari R. Formulation and evaluation of red ginger rhizome extract soap as an anti-bacterial. Int J App Pharm. 2024;16(3):251-5. doi: 10.22159/ijap.2024v16i3.49550.
Neela S, Ajitha M, Kuchana V. Formulation and assessment of herbal emulgels in the management of acne: in vitro and in vivo investigations. Int J App Pharm. 2024;16(1):51-60. doi: 10.22159/ijap.2024v16i1.49671.
Laila L, Candra A, Permata YM, Prasetyo BE. The influence of catharanthus roseus (L.) G. Don. Ethanol extract in clove oil nanoemulsion: physical characterization antioxidant and anti-bacterial activities. Int J App Pharm. 2023;15(3):254-60. doi: 10.22159/ijap.2023v15i3.47138.
Sowmya N, Chandrakala V, Srinivasan S. Review on: effect of oil surfactant and cosurfactant on microemulsion. Int J Curr Pharm Sci. 2022;14(4):23-7. doi: 10.22159/ijcpr.2022v14i4.2011.
Date AA, Desai N, Dixit R, Nagarsenker M. Self nanoemulsifying drug delivery systems: formulation insights applications and advances. Nanomedicine (Lond). 2010;5(10):1595-616. doi: 10.2217/nnm.10.126, PMID 21143036.
Chrismaurin F, Dwiastuti R, Chabib L, Yuliani SH. The effect of olive oil tween 60 and span 20 on physical characteristics of quercetin nanoemulgel. Int J App Pharm. 2023;15(1):212-7. doi: 10.22159/ijap.2023v15i1.46423.
Forestryana D, Hayati A, Putri AN. Formulation and evaluation of natural gel containing ethanolic extract of pandanus amaryllifolius r. using various gelling agents. Borneo J Pharm. 2022;5(4):345-56. doi: 10.33084/bjop.v5i4.1411.
Baron JM, Glatz M, Proksch E. Optimal support of wound healing: new insights. Dermatology. 2020;236(6):593-600. doi: 10.1159/000505291, PMID 31955162.
Safitri FI, Nawangsari D, Febrina D. Overview: application of carbopol. In: Gel International Conference on Health and Medical Sciences. 2021;940:80-4. doi: 10.2991/ahsr.k.210127.018.
USP. Topical and transdermal drug products. The U State Pharmacopeial/Natl Formul Pharmacopeial Forum; 2009;35(3):750-64.
Veronica EF, Dwiastuti R. Formulation and evaluation of wound healing gel of white leadtree (Leucaena leucocephala (Lam.) de Wit.) leaves extract. Int J App Pharm. 2022;14(1):275-80. doi: 10.22159/ijap.2022v14i1.42126.
Vowden K, Vowden P. Wound dressings: principlesandpractice. Surgery (Oxf). 2014;32(9):462-7. doi: 10.1016/j.mpsur.2014.07.
Lantis JC, Paredes JA. Topical wound care treatment and indications for their use. In: Veves A, Giurini JM, Guzman RJ, editors. The Diabetic Foot. Cham: Springer International Publishing; 2018. p. 281-304. doi: 10.1007/978-3-319-89869-8_18.
Varges R, M Costa C, S Fonseca B, F Naccache M, DE Souza Mendes P. Rheological characterization of carbopol® dispersions in water and in water/glycerol solutions. Fluids. 2019;4(1):1-20. doi: 10.3390/fluids4010003.
Purnamawati S, Indrastuti N, Danarti R, Saefudin T. The role of moisturizers in addressing various kinds of dermatitis: a review. Clin Med Res. 2017;15(3-4):75-87. doi: 10.3121/cmr.2017.1363, PMID 29229630.
Shahbazi Y. Anti-bacterial and antioxidant properties of methanolic extracts of apple (Malus pumila) grape (Vitis vinifera) pomegranate (Punica granatum L.) and common fig (Ficus carica L.) fruits. Pharm Sci. 2017;23(4):308-15. doi: 10.15171/PS.2017.45.
Zmejkoski DZ, Markovic ZM, Budimir MD, Zdravkovic NM, Trisic DD, Bugarova N. Photoactive and antioxidant nanochitosan dots/biocellulose hydrogels for wound healing treatment. Mater Sci Eng C Mater Biol Appl. 2021;122:111925. doi: 10.1016/j.msec.2021.111925, PMID 33641918.
Luthfiyana N, Bija S, Nugraeni CD, Lembang MS, Anwar E, Laksmitawati DR. Characteristics and anti-bacterial activity of chitosan nanoparticles from mangrove crab shell (Scylla sp.) in Tarakan Waters, North Kalimantan, Indonesia. Biodiversitas. 2022;23(8):4018-25. doi: 10.13057/biodiv/d230820.
Yadav NK, Mazumder R, Rani A, Kumar A. Current perspectives on using nanoparticles for diabetes management. Int J App Pharm. 2024;16(5):38-45. doi: 10.22159/ijap.2024v16i5.51084.
Published
How to Cite
Issue
Section
Copyright (c) 2025 YUSAN LY, SUBAGIO H

This work is licensed under a Creative Commons Attribution 4.0 International License.