RECENT ADVANCES IN TREATMENT APPROACHES FOR DIABETES MELLITUS AND RELATED COMPLICATIONS: A REVIEW

Authors

  • SIDDHANT DHYANI Department of Pharmaceutics, Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, Uttarakhand-248007, India
  • MANSI BUTOLA Department of Pharmaceutics, Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, Uttarakhand-248007, India https://orcid.org/0000-0002-2631-5727
  • VANSHIKA SAUTHA Department of Pharmaceutics, Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, Uttarakhand-248007, India
  • VIKASH JAKHMOLA Department of Pharmaceutical Chemistry, Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, Uttarakhand-248007, India https://orcid.org/0000-0002-8108-006X

DOI:

https://doi.org/10.22159/ijap.2025v17i2.53184

Keywords:

Nanotechnology, Diabetes mellitus, Patient compliance, Hyperglycemia, Nanocarriers

Abstract

Diabetes Mellitus (DM) can be treated with a variety of therapeutic approaches. Patients are forced to initiate therapy with antidiabetic agents when diet and exercise are ineffective to regulate hyperglycemia. However, these drugs have several disadvantages that can influence the course of treatment. The primary drawbacks of the current oral modalities for the treatment of DM are the immediate release of the drug and the low bioavailability, which necessitates an increase in the frequency of dosing. Patient compliance to therapy decreases in conjunction with the manifestation of adverse side effects. The development of innovative delivery modalities that have the potential to improve the efficacy of anti-diabetic regimens has been a fertile area for nanotechnology in recent years. The primary objective of all attempts has been to (a) safeguard the drug by encapsulating it in a nano-carrier system and (b) release the drug in a controlled and progressive manner using effective techniques. The current review aims to compile effective nanocarriers like polymeric nanoparticles (NPs), liposomes, niosomes, dendrimers, micelles, solid lipid NPs, transfersomes, ethosomes, nanofibers, and carbon nanotubes for the treatment of diabetes mellitus, emerging treatment strategies and various complications related to this disease.

References

Rajendiran D, Packirisamy S, Gunasekaran K. A review on role of antioxidants in diabetes. Asian J Pharm Clin Res. 2018;11(2):48-53. doi: 10.22159/ajpcr.2018.v11i2.23241.

Cao X, Chen N, LI Y. Editorial: beta cell function and diabetes remission. Front Endocrinol (Lausanne). 2023 Dec 15;14:1298101. doi: 10.3389/fendo.2023.1298101, PMID 38161979.

Dharani B, Suba A, Sebastian S. View of understanding the benefits of stevia rebaudiana bertoni for diabetes: a comprehensive review. Int J Pharm Pharm Sci. 2024;16(11):12-6. doi 10.22159/ijpps.2024v16i11.52382.

Frimpong EK, Thembane N, Hlatshwayo S, Ngcobo M, Gqaleni N. Indigenous medicinal plants used in the management of diabetes in Africa: 5 y (2019-2024) in perspective. Plants (Basel). 2024;13(14):1898. doi: 10.3390/plants13141898, PMID 39065425.

Cho NH, Shaw JE, Karuranga S, Huang Y, DA Rocha Fernandes JD, Ohlrogge AW. IDF diabetes atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018;138:271-81. doi: 10.1016/j.diabres.2018.02.023, PMID 29496507.

Kahaly GJ, Hansen MP. Type 1 diabetes associated autoimmunity. Autoimmun Rev. 2016;15(7):644-8. doi: 10.1016/j.autrev.2016.02.017, PMID 26903475.

Brestoff JR, Artis D. Immune regulation of metabolic homeostasis in health and disease. Cell. 2015;161(1):146-60. doi: 10.1016/j.cell.2015.02.022, PMID 25815992.

Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nat Rev Immunol. 2011;11(2):98-107. doi: 10.1038/nri2925, PMID 21233852.

Weyer C, Bogardus C, Mott DM, Pratley RE. The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. J Clin Invest. 1999;104(6):787-94. doi: 10.1172/JCI7231, PMID 10491414.

Yadav NK, Mazumder R, Rani A, Kumar A. Current perspectives on using nanoparticles for diabetes management. Int J Appl Pharm. 2024;16(5):38-45. doi: 10.22159/ijap.2024v16i5.51084.

Banday MZ, Sameer AS, Nissar S. Pathophysiology of diabetes: an overview. Avicenna J Med. 2020;10(4):174-88. doi: 10.4103/ajm.ajm_53_20, PMID 33437689.

McIntyre HD, Catalano P, Zhang C, Desoye G, Mathiesen ER, Damm P. Gestational diabetes mellitus. Nat Rev Dis Primers. 2019;5(1):47. doi: 10.1038/s41572-019-0098-8, PMID 31296866.

Liu P, Zhang Z, Cai Y, LI Z, Zhou Q, Chen Q. Ferroptosis: mechanisms and role in diabetes mellitus and its complications. Ageing Res Rev. 2024 Feb;94:102201. doi: 10.1016/j.arr.2024.102201, PMID 38242213.

Hirai FE, Tielsch JM, Klein BE, Klein R. Ten year change in vision related quality of life in type 1 diabetes: wisconsin epidemiologic study of diabetic retinopathy. Ophthalmology. 2011;118(2):353-8. doi: 10.1016/j.ophtha.2010.06.022, PMID 20884058.

Ambiya V, Kumar A, Baranwal VK, Kapoor G, Arora A, Kalra N. Change in subfoveal choroidal thickness in diabetes and in various grades of diabetic retinopathy. Int J Retina Vitreous. 2018;4(1):34. doi: 10.1186/s40942-018-0136-9, PMID 30214825.

Sarwar N, Aspelund T, Eiriksdottir G, Gobin R, Seshasai SR, Forouhi NG. Markers of dysglycaemia and risk of coronary heart disease in people without diabetes: reykjavik prospective study and systematic review. Plos Med. 2010;7(5):e1000278. doi: 10.1371/journal.pmed.1000278, PMID 20520805.

Jamnitski A, Symmons D, Peters MJ, Sattar N, McInnes I, Nurmohamed MT. Cardiovascular comorbidities in patients with psoriatic arthritis: a systematic review. Ann Rheum Dis. 2013;72(2):211-6. doi: 10.1136/annrheumdis-2011-201194, PMID 22532629.

Sekiou O, Boumendjel M, Taibi F, Tichati L, Boumendjel A, Messarah M. Nephroprotective effect of Artemisia herba alba aqueous extract in alloxan-induced diabetic rats. J Tradit Complement Med. 2021;11(1):53-61. doi: 10.1016/j.jtcme.2020.01.001, PMID 33511062.

Sivakumar S, Palsamy P, Subramanian SP. Impact of d-pinitol on the attenuation of proinflammatory cytokines hyperglycemia mediated oxidative stress and protection of kidney tissue ultrastructure in streptozotocin induced diabetic rats. Chem Biol Interact. 2010;188(1):237-45. doi: 10.1016/j.cbi.2010.07.014, PMID 20643114.

Ojiako OA, Chikezie PC, Ogbuji AC. Histopathological studies of renal and hepatic tissues of hyperglycemic rats administered with traditional herbal formulations. Int J Green Pharm. 2015;9(3):184-91. doi: 10.4103/0973-8258.161237.

Obrosova IG. Diabetic painful and insensate neuropathy: pathogenesis and potential treatments. Neurotherapeutics. 2009;6(4):638-47. doi: 10.1016/j.nurt.2009.07.004, PMID 19789069.

Wessels AM, Rombouts SA, Simsek S, Kuijer JP, Kostense PJ, Barkhof F. Microvascular disease in type 1 diabetes alters brain activation: a functional magnetic resonance imaging study. Diabetes. 2006;55(2):334-40. doi: 10.2337/diabetes.55.02.06.db05-0680, PMID 16443765.

Padhi S, Nayak AK, Behera A. Type II diabetes mellitus: a review on recent drug based therapeutics. Biomed Pharmacother. 2020 Nov;131:110708. doi: 10.1016/j.biopha.2020.110708, PMID 32927252.

Simos YV, Spyrou K, Patila M, Karouta N, Stamatis H, Gournis D. Trends of nanotechnology in type 2 diabetes mellitus treatment. Asian J Pharm Sci. 2021;16(1):62-76. doi: 10.1016/j.ajps.2020.05.001, PMID 33613730.

Lin SH, Cheng PC, TU ST, Hsu SR, Cheng YC, Liu YH. Effect of metformin monotherapy on serum lipid profile in statin naive individuals with newly diagnosed type 2 diabetes mellitus: a cohort study. Peer J. 2018 Apr 12;6:e4578. doi: 10.7717/peerj.4578, PMID 29666753.

Shurrab NT, Arafa ES. Metformin: a review of its therapeutic efficacy and adverse effects. Obes Med. 2020 Mar;17:100186. doi: 10.1016/j.obmed.2020.100186.

Chen Y, Shan X, Luo C, HE Z. Emerging nanoparticulate drug delivery systems of metformin. J Pharm Investig. 2020;50(3):219-30. doi: 10.1007/s40005-020-00480-1.

Bourron O, Daval M, Hainault I, Hajduch E, Servant JM, Gautier JF. Biguanides and thiazolidinediones inhibit stimulated lipolysis in human adipocytes through activation of AMP activated protein kinase. Diabetologia. 2010;53(4):768-78. doi: 10.1007/s00125-009-1639-6, PMID 20043143.

Turner R. Effect of intensive blood glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet. 1998;352(9131):854-65. doi: 10.1016/S0140-6736(98)07037-8.

Wehmeier UF, Piepersberg W. Biotechnology and molecular biology of the α-glucosidase inhibitor acarbose. Appl Microbiol Biotechnol. 2004;63(6):613-25. doi: 10.1007/s00253-003-1477-2, PMID 14669056.

Narita T, Yokoyama H, Yamashita R, Sato T, Hosoba M, Morii T. Comparisons of the effects of 12 w administration of miglitol and voglibose on the responses of plasma incretins after a mixed meal in Japanese type 2 diabetic patients. Diabetes Obes Metab. 2012;14(3):283-7. doi: 10.1111/j.1463-1326.2011.01526.x, PMID 22051162.

Derosa G, Maffioli P. α-glucosidase inhibitors and their use in clinical practice. Arch Med Sci. 2012;8(5):899-906. doi: 10.5114/aoms.2012.31621, PMID 23185202.

Holt RI, Lambert KD. The use of oral hypoglycaemic agents in pregnancy. Diabet Med. 2014;31(3):282-91. doi: 10.1111/dme.12376, PMID 24528229.

Feingold KR. Oral and injectable (non-insulin) pharmacological agents for the treatment of type 2 diabetes. Endotext; 2024.

Thule PM, Umpierrez G. Sulfonylureas: a new look at old therapy topical collection on pharmacologic treatment of type 2 diabetes. Curr Diab Rep. 2014;14(4):1-8.

Sola D, Rossi L, Schianca GP, Maffioli P, Bigliocca M, Mella R. Sulfonylureas and their use in clinical practice. Arch Med Sci. 2015;11(4):840-8. doi: 10.5114/aoms.2015.53304, PMID 26322096.

Roumie CL, Hung AM, Greevy RA, Grijalva CG, Liu X, Murff HJ. Comparative effectiveness of sulfonylurea and metformin monotherapy on cardiovascular events in type 2 diabetes mellitus: a cohort study. Ann Intern Med. 2012;157(9):601-10. doi: 10.7326/0003-4819-157-9-201211060-00003, PMID 23128859.

Chaudhury A, Duvoor C, Reddy Dendi VS, Kraleti S, Chada A, Ravilla R. Clinical review of antidiabetic drugs: implications for type 2 diabetes mellitus management. Front Endocrinol. 2017;8:6. doi: 10.3389/fendo.2017.00006, PMID 28167928.

Eldor R, DE Fronzo RA, Abdul Ghani M. In vivo Actions of peroxisome proliferator activated receptors: glycemic control insulin sensitivity and insulin secretion. Diabetes Care. 2013;36 Suppl 2:S162-74. doi: 10.2337/dcS13-2003, PMID 23882042.

Defronzo RA, Tripathy D, Schwenke DC, Banerji MA, Bray GA, Buchanan TA. Prevention of diabetes with pioglitazone in ACT NOW: physiologic correlates. Diabetes. 2013;62(11):3920-6. doi: 10.2337/db13-0265, PMID 23863810.

Gastaldelli A, Ferrannini E, Miyazaki Y, Matsuda M, Mari A, DE Fronzo RA. Thiazolidinediones improve β-cell function in type 2 diabetic patients. Am J Physiol Endocrinol Metab. 2007;292(3):E871-83. doi: 10.1152/ajpendo.00551.2006, PMID 17106061.

Adeghate E, Kalasz H. Amylin analogues in the treatment of diabetes mellitus: medicinal chemistry and structural basis of its function. Open Med Chem J. 2011;5 Suppl 2:78-81. doi: 10.2174/1874104501105010078, PMID 21966328.

Schmitz O, Brock B, Rungby J. Amylin agonists: a novel approach in the treatment of diabetes. Diabetes. 2004;53 Suppl 3:S233-8. doi: 10.2337/diabetes.53.suppl_3.s233, PMID 15561917.

Hoogwerf BJ, Doshi KB, Diab D. Pramlintide the synthetic analogue of amylin: physiology pathophysiology and effects on glycemic control body weight and selected biomarkers of vascular risk. Vasc Health Risk Manag. 2008;4(2):355-62. doi: 10.2147/vhrm.s1978, PMID 18561511.

Bunck MC, Corner A, Eliasson B, Heine RJ, Shaginian RM, Taskinen MR. Effects of exenatide on measures of β-cell function after 3 y in metformin treated patients with type 2 diabetes. Diabetes Care. 2011;34(9):2041-7. doi: 10.2337/dc11-0291, PMID 21868779.

Klonoff DC, Buse JB, Nielsen LL, Guan X, Bowlus CL, Holcombe JH. Exenatide effects on diabetes obesity cardiovascular risk factors and hepatic biomarkers in patients with type 2 diabetes treated for at least 3 years. Curr Med Res Opin. 2008;24(1):275-86. doi: 10.1185/030079908x253870, PMID 18053320.

Kalra S. Sodium glucose Co-Transporter-2 (SGLT2) inhibitors: a review of their basic and clinical pharmacology. Diabetes Ther. 2014;5(2):355-66. doi: 10.1007/s13300-014-0089-4, PMID 25424969.

Cherney DZ, Perkins BA, Soleymanlou N, Maione M, Lai V, Lee A. Renal hemodynamic effect of sodium glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus. Circulation. 2014;129(5):587-97. doi: 10.1161/circulationaha.113.005081, PMID 24334175.

Rai VK, Mishra N, Agrawal AK, Jain S, Yadav NP. Novel drug delivery system: an immense hope for diabetics. Drug Deliv. 2016;23(7):2371-90. doi: 10.3109/10717544.2014.991001, PMID 25544604.

Wang J, HU S, Mao W, Xiang J, Zhou Z, Liu X. Assemblies of peptide cytotoxin conjugates for tumor homing chemotherapy. Adv Funct Materials. 2019;29(7):1807446. doi: 10.1002/adfm.201807446.

Mudshinge SR, Deore AB, Patil S, Bhalgat CM. Nanoparticles: emerging carriers for drug delivery. Saudi Pharm J. 2011;19(3):129-41. doi: 10.1016/j.jsps.2011.04.001, PMID 23960751.

Souto EB, Souto SB, Campos JR, Severino P, Pashirova TN, Zakharova LY. Nanoparticle delivery systems in the treatment of diabetes complications. Molecules. 2019;24(23):4209. doi: 10.3390/molecules24234209, PMID 31756981.

Hadiya S, Radwan R, Zakaria M, El Sherif T, Hamad MA, Elsabahy M. Nanoparticles integrating natural and synthetic polymers for in vivo insulin delivery. Pharm Dev Technol. 2021;26(1):30-40. doi: 10.1080/10837450.2020.1832117, PMID 33019826.

Abbas A, Eissa NG, El Bassossy HM, Ghorab MM, El Nahas HM. Polymeric linagliptin nanoparticles as a sustained release treatment for type 2 diabetes. J Drug Deliv Sci Technol. 2024 Mar;93:105438. doi: 10.1016/j.jddst.2024.105438.

Lari AS, Zahedi P, Ghourchian H, Khatibi A. Microfluidic based synthesized carboxymethyl chitosan nanoparticles containing metformin for diabetes therapy: in vitro and in vivo assessments. Carbohydr Polym. 2021 Jun 1;261:117889. doi: 10.1016/j.carbpol.2021.117889, PMID 33766375.

Sharma DK, Pattnaik G, Behera A. Development and in vitro-in vivo evaluation of pioglitazone loaded polymeric nanoparticles using central composite design surface response methodology. Open Nano. 2023 May;11:100141. doi: 10.1016/j.onano.2023.100141.

Ribeiro MC, Correa VL, DA Silva FK, Casas AA, Chagas A DE l das, Oliveira LP DE, Miguel MP, Diniz DGA, Amaral AC, Menezes LBD. Wound healing treatment using insulin within polymeric nanoparticles in the diabetes animal model. European Journal of Pharmaceutical Sciences. 2020 Jul 1;150:105330.

El Dakroury WA, Zewail MB, Amin MM. Design optimization and in vivo performance of glipizide loaded O-carboxymethyl chitosan nanoparticles in insulin resistant/type 2 diabetic rat model. J Drug Deliv Sci Technol. 2023;79:104040. doi: 10.1016/j.jddst.2022.104040.

Bulboaca AE, Boarescu PM, Bolboaca SD, Blidaru M, Festila D, Dogaru G. Comparative effect of curcumin versus liposomal curcumin on systemic pro-inflammatory cytokines profile MCP-1 and RANTES in experimental diabetes mellitus. Int J Nanomedicine. 2019 Nov 18;14:8961-72. doi: 10.2147/IJN.S226790, PMID 31819412.

Amjadi S, Mesgari Abbasi M, Shokouhi B, Ghorbani M, Hamishehkar H. Enhancement of therapeutic efficacy of betanin for diabetes treatment by liposomal nanocarriers. J Funct Foods. 2019 Aug;59:119-28. doi: 10.1016/j.jff.2019.05.015.

Ding Q, Liu X, Zhang S, Chai G, MA S, Sun S. Chitosan modified dihydromyricetin liposomes promote the repair of liver injury in mice suffering from diabetes mellitus. Int J Biol Macromol. 2024;273(2):133040. doi: 10.1016/j.ijbiomac.2024.133040, PMID 38857721.

HU M, Gou T, Chen Y, XU M, Chen R, Zhou T. A novel drug delivery system: hyodeoxycholic acid modified metformin liposomes for type 2 diabetes treatment. Molecules. 2023;28(6):2471. doi: 10.3390/molecules28062471, PMID 36985444.

Zhang K, Chen J, Raza F, Zafar H, XU Y, LI R. Advancing diabetes treatment: novel formulation of polydatin long circulating liposomes and their glucose-regulating impact on hyperlipidemia induced type 2 diabetic mice. Mater Adv. 2024;5(16):6516-34. doi: 10.1039/D4MA00020J.

Sarhadi S, Moosavian SA, Mashreghi M, Rahiman N, Golmohamadzadeh S, Tafaghodi M. B12-functionalized pegylated liposomes for the oral delivery of insulin: in vitro and in vivo studies. J Drug Deliv Sci Technol. 2022 Mar;69:103141. doi: 10.1016/j.jddst.2022.103141.

Samed N, Sharma V, Sundaramurthy A. Hydrogen bonded niosomes for encapsulation and release of hydrophilic and hydrophobic anti-diabetic drugs: an efficient system for oral anti-diabetic formulation. Appl Surf Sci. 2018 Aug 15;449:567-73. doi: 10.1016/j.apsusc.2017.11.055.

Hasan AA, Madkor H, Wageh S. Formulation and evaluation of metformin hydrochloride loaded niosomes as controlled release drug delivery system. Drug Deliv. 2013;20(3-4):120-6. doi: 10.3109/10717544.2013.779332, PMID 23651102.

Tyagi R, Waheed A, Kumar N, Ahad A, Bin Jardan YA, Mujeeb M. Formulation and evaluation of plumbagin loaded niosomes for an antidiabetic study: optimization and in vitro evaluation. Pharmaceuticals (Basel). 2023;16(8):1169. doi: 10.3390/ph16081169, PMID 37631084.

Mohsen AM, Abou Samra MM, ElShebiney SA. Enhanced oral bioavailability and sustained delivery of glimepiride via niosomal encapsulation: in vitro characterization and in vivo evaluation. Drug Dev Ind Pharm. 2017;43(8):1254-64. doi: 10.1080/03639045.2017.1310224, PMID 28330377.

Singhal T, Mujeeb M, Ahad A, Aqil M, Rahman SO, Najmi AK. Preparation optimization and biological evaluation of gymnemic acid loaded niosomes against streptozotocin nicotinamide induced diabetic nephropathy in wistar rats. J Drug Deliv Sci Technol. 2019 Dec;54:101328. doi: 10.1016/j.jddst.2019.101328.

Alam MS, Ahad A, Abidin L, Aqil M, Mir SR, Mujeeb M. Embelin loaded oral niosomes ameliorate streptozotocin induced diabetes in wistar rats. Biomed Pharmacother. 2018;97:1514-20. doi: 10.1016/j.biopha.2017.11.073, PMID 29793314.

Zhang D, Huang Q. Encapsulation of astragaloside with matrix metalloproteinase-2-responsive hyaluronic acid end-conjugated polyamidoamine dendrimers improves wound healing in diabetes. J Biomed Nanotechnol. 2020;16(8):1229-40. doi: 10.1166/jbn.2020.2971, PMID 33397553.

Labieniec Watala M, Przygodzki T, Sebekova K, Watala C. Can metabolic impairments in experimental diabetes be cured with poly (amido) amine (PAMAM) G4 dendrimers? In the search for minimizing of the adverse effects of PAMAM administration. Int J Pharm. 2014;464(1-2):152-67. doi: 10.1016/j.ijpharm.2014.01.011, PMID 24463003.

Kwon MJ, AN S, Choi S, Nam K, Jung HS, Yoon CS. Effective healing of diabetic skin wounds by using nonviral gene therapy based on minicircle vascular endothelial growth factor DNA and a cationic dendrimer. J Gene Med. 2012;14(4):272-8. doi: 10.1002/jgm.2618, PMID 22407991.

Akhtar S, Chandrasekhar B, Yousif MH, Renno W, Benter IF, El Hashim AZ. Chronic administration of nano sized pamam dendrimers in vivo inhibits EGFR-ERK1/2-ROCK signaling pathway and attenuates diabetes induced vascular remodeling and dysfunction. Nanomedicine. 2019 Jun;18:78-89. doi: 10.1016/j.nano.2019.02.012, PMID 30844576.

Kassem AA, Abd El Alim SH, Basha M, Salama A. Phospholipid complex enriched micelles: a novel drug delivery approach for promoting the antidiabetic effect of repaglinide. Eur J Pharm Sci. 2017 Mar 1;99:75-84. doi: 10.1016/j.ejps.2016.12.005, PMID 27998799.

Liu X, LI C, LV J, Huang F, AN Y, Shi L. Glucose and H2O2 dual responsive polymeric micelles for the self regulated release of insulin. ACS Appl Bio Mater. 2020;3(3):1598-606. doi: 10.1021/acsabm.9b01185, PMID 35021650.

Zhu J, Jiang G, Hong W, Zhang Y, XU B, Song G. Rapid gelation of oxidized hyaluronic acid and succinyl chitosan for integration with insulin loaded micelles and epidermal growth factor on diabetic wound healing. Mater Sci Eng C Mater Biol Appl. 2020 Dec;117:111273. doi: 10.1016/j.msec.2020.111273, PMID 32919637.

Bahman F, Taurin S, Altayeb D, Taha S, Bakhiet M, Greish K. Oral insulin delivery using poly (styrene Co-maleic acid) micelles in a diabetic mouse model. Pharmaceutics. 2020;12(11):1026. doi: 10.3390/pharmaceutics12111026, PMID 33120872.

Kassem AA, Abd El Alim SH, Basha M, Salama A. Phospholipid complex enriched micelles: a novel drug delivery approach for promoting the antidiabetic effect of repaglinide. Eur J Pharm Sci. 2017 Mar 1;99:75-84. doi: 10.1016/j.ejps.2016.12.005, PMID 27998799.

Kumar V, Poonia N, Kumar P, Kumar Verma P, Alshammari A, Albekairi NA. Amphiphilic lauric acid coupled pluronic based nano micellar system for efficient glipizide delivery. Saudi Pharm J. 2024;32(5):102046. doi: 10.1016/j.jsps.2024.102046, PMID 38577487.

Singh J, Mittal P, Vasant Bonde G, Ajmal G, Mishra B. Design optimization characterization and in vivo evaluation of quercetin enveloped Soluplus®/P407 micelles in diabetes treatment. Artif Cells Nanomed Biotechnol. 2018;46 Suppl 3:S546-55. doi: 10.1080/21691401.2018.1501379, PMID 30322273.

Welengodage I, Katuwavila NP. Recent advancements in lipid nanoparticle technology for oral insulin delivery. University of Colombo Review. 2024;5(1):130-44. doi: 10.4038/ucr.v5i1.134.

Wang M, Wang C, Ren S, Pan J, Wang Y, Shen Y. Versatile oral insulin delivery nanosystems: from materials to nanostructures. Int J Mol Sci. 2022;23(6):3362. doi: 10.3390/ijms23063362, PMID 35328783.

Bharti Sharma J, Bhatt S, Tiwari A, Tiwari V, Kumar M, Verma R. Statistical optimization of tetrahydrocurcumin loaded solid lipid nanoparticles using box behnken design in the management of streptozotocin induced diabetes mellitus. Saudi Pharm J. 2023;31(9):101727. doi: 10.1016/j.jsps.2023.101727, PMID 37638219.

Anchan RB, Koland M. Oral insulin delivery by chitosan coated solid lipid nanoparticles: ex vivo and in vivo studies. J Young Pharm. 2021;13(1):43-8. doi: 10.5530/jyp.2021.13.10.

Mohseni R, Arab Sadeghabadi Z, Ziamajidi N, Abbasalipourkabir R, Rezaei Farimani A. Oral administration of resveratrol loaded solid lipid nanoparticle improves insulin resistance through targeting expression of SNARE proteins in adipose and muscle tissue in rats with type 2 diabetes. Nanoscale Res Lett. 2019;14(1):227. doi: 10.1186/s11671-019-3042-7, PMID 31290033.

Oroojan AA, Ahangarpour A, Paknejad B, Zareian P, Hami Z, Abtahi SR. Effects of myricitrin and solid lipid nanoparticle containing myricitrin on reproductive system disorders induced by diabetes in male mouse. World J Mens Health. 2021;39(1):147-57. doi: 10.5534/wjmh.190010, PMID 32009314.

Shah P, Chavda K, Vyas B, Patel S. Formulation development of linagliptin solid lipid nanoparticles for oral bioavailability enhancement: role of P-gp inhibition. Drug Deliv Transl Res. 2021;11(3):1166-85. doi: 10.1007/s13346-020-00839-9, PMID 32804301.

Fernandez Garcia R, Lalatsa A, Statts L, Bolas Fernandez F, Ballesteros MP, Serrano DR. Transferosomes as nanocarriers for drugs across the skin: quality by design from lab to industrial scale. Int J Pharm. 2020;573:118817. doi: 10.1016/j.ijpharm.2019.118817, PMID 31678520.

Duangjit S, Opanasopit P, Rojanarata T, Ngawhirunpat T. Characterization and in vitro skin permeation of meloxicam loaded liposomes versus transfersomes. J Drug Deliv. 2011;2011(1):418316. doi: 10.1155/2011/418316, PMID 21490750.

Mazhar D, Haq NU, Zeeshan M, Ain QU, Ali H, Khan S. Preparation characterization and pharmacokinetic assessment of metformin HCl loaded transfersomes co-equipped with permeation enhancer to improve drug bioavailability via transdermal route. J Drug Deliv Sci Technol. 2023;84:104448. doi: 10.1016/j.jddst.2023.104448.

Hussain M, Hafeez A, Kushwaha SP. Nanoformulation mediated transdermal delivery of anti-diabetic drugs: an updated review. Intell Pharm. 2023;1(4):192-200. doi: 10.1016/j.ipha.2023.08.009.

Abdallah MH, Abu Lila AS, Shawky SM, Almansour K, Alshammari F, Khafagy ES. Experimental design and optimization of nano transfersomal gel to enhance the hypoglycemic activity of silymarin. Polymers (Basel). 2022;14(3):508. doi: 10.3390/polym14030508, PMID 35160498.

Ramkanth S, Anitha P, Gayathri R, Mohan S, Babu D. Formulation and design optimization of nano transferosomes using pioglitazone and eprosartan mesylate for concomitant therapy against diabetes and hypertension. Eur J Pharm Sci. 2021;162:105811. doi: 10.1016/j.ejps.2021.105811, PMID 33757828.

Malakar J, Sen SO, Nayak AK, Sen KK. Formulation optimization and evaluation of transferosomal gel for transdermal insulin delivery. Saudi Pharm J. 2012;20(4):355-63. doi: 10.1016/j.jsps.2012.02.001, PMID 23960810.

Hussain M, Hafeez A, Kushwaha SP. Nanoformulation mediated transdermal delivery of anti-diabetic drugs: an updated review. Intell Pharm. 2023;1(4):192-200. doi: 10.1016/j.ipha.2023.08.009.

Aouta E, Patra CN. Design optimization and characterization of combined ethosomal transdermal patch of glimepiride and duloxetine drug regimen for diabetes and associated neuropathic pain management. Curr Drug Ther. 2022;17(5):359-68. doi: 10.2174/1574885517666220525122859.

Raghav SS, Kumar B, Sethiya NK, Singhal M, Alhowyan A, Kalam MA. Potential of hybrid lecithin chitosan kaempferol ethosomes for the treatment of diabetic foot ulcer: in vitro and in vivo investigation. J Drug Deliv Sci Technol. 2024 Sep;98:105927. doi: 10.1016/j.jddst.2024.105927.

Bodade SS, Shaikh KS, Kamble MS, Chaudhari PD. A study on ethosomes as mode for transdermal delivery of an antidiabetic drug. Drug Deliv. 2013;20(1):40-6. doi: 10.3109/10717544.2012.752420, PMID 23311652.

Fathima H, Srilatha KS, Geethalakshmi A, Sequeira C. Formulation and evaluation of vildagliptin ethosomal gel for diabetes mellitus. Arch Pharm Sci Res. 2023;13:150-6.

Maleki H, Khoshnevisan K, Sajjadi Jazi SM, Baharifar H, Doostan M, Khoshnevisan N. Nanofiber based systems intended for diabetes. J Nanobiotechnology. 2021;19(1):317. doi: 10.1186/s12951-021-01065-2, PMID 34641920.

Song J, Kim M, Lee H. Recent advances on nanofiber fabrications: unconventional state of the art spinning techniques. Polymers. 2020;12(6):1386. doi: 10.3390/polym12061386, PMID 32575746.

Lee H, Kim IS. Nanofibers: emerging progress on fabrication using mechanical force and recent applications. Polym Rev. 2018;58(4):688-716. doi: 10.1080/15583724.2018.1495650.

Panda BP, Wei MX, Kumar N, Shivashekaregowda H, Patnaik S. Design fabrication and characterization of PVA/PLGA electrospun nanofibers carriers for improvement of drug delivery of gliclazide in type-2 diabetes. Proceedings. 2020;78(1):14.

Alamer AA, Alsaleh NB, Aodah AH, Alshehri AA, Almughem FA, Alqahtani SH. Development of imeglimin electrospun nanofibers as a potential buccal antidiabetic therapeutic approach. Pharmaceutics. 2023;15(4):1208. doi: 10.3390/pharmaceutics15041208, PMID 37111693.

Shoukat R, Khan MI. Carbon nanotubes: a review on properties synthesis methods and applications in micro and nanotechnology. Microsyst Technol. 2021;27(12):4183-92. doi: 10.1007/s00542-021-05211-6.

Zaman S, Hussain S, Butt FK, Jianguo X, Zhu C. Functionalization of carbon nanotubes by a facile chemical method and its application in anti-diabetic activity. J Nanosci Nanotechnol. 2017;17(11):8557-61. doi: 10.1166/jnn.2017.15178.

Peters CJ, Hindmarsh PC, Thompson RJ. Insulin pump therapy. Paediatr Child Health. 2017 Apr 1;27(4):160-5. doi: 10.1016/j.paed.2017.02.002.

Peters CJ, Hindmarsh PC, Thompson RJ. Insulin pump therapy. Paediatr Child Health. 2017;27(4):160-5. doi: 10.1016/j.paed.2017.02.002.

Nimri R, Nir J, Phillip M. Insulin pump therapy. Am J Ther. 2020;27(1):e30-41. doi: 10.1097/MJT.0000000000001097, PMID 31833871.

Mishra V, Nayak P, Sharma M, Albutti A, Alwashmi AS, Aljasir MA. Emerging treatment strategies for diabetes mellitus and associated complications: an update. Pharmaceutics. 2021;13(10):1568. doi: 10.3390/pharmaceutics13101568, PMID 34683861.

Buchwald H, Rohde TD, Dorman FD, Skakoon JG, Wigness BD, Prosl FR. A totally implantable drug infusion defice: laboratory and clinical experience using a model with single flow rate and new design for modulated insulin infusion. Diabetes Care. 1980;3(2):351-8. doi: 10.2337/diacare.3.2.351, PMID 6993152.

Gin H, Renard E, Melki V, Boivin S, Schaepelynck Belicar P, Guerci B. Combined improvements in implantable pump technology and insulin stability allow safe and effective long term intraperitoneal insulin delivery in type 1 diabetic patients: the EVADIAC experience. Diabetes Metab. 2003;29(6):602-7. doi: 10.1016/s1262-3636(07)70075-7, PMID 14707889.

Duckworth WC, Saudek CD, Henry RR. Why intraperitoneal delivery of insulin with implantable pumps in NIDDM? Diabetes. 1992;41(6):657-61. doi: 10.2337/diab.41.6.657, PMID 1587393.

Brouwer E, Knol R, Vernooij AS, Van Den Akker T, Vlasman PE, Klumper FJ. Physiological based cord clamping in preterm infants using a new purpose built resuscitation table: a feasibility study. Arch Dis Child Fetal Neonatal Ed. 2019;104(4):F396-402. doi: 10.1136/archdischild-2018-315483, PMID 30282674.

Miller KM, Foster NC, Beck RW, Bergenstal RM, DuBose SN, DI meglio LA. Current state of type 1 diabetes treatment in the U.S: updated data from the T1D exchange clinic registry. Diabetes Care. 2015;38(6):971-8. doi: 10.2337/dc15-0078, PMID 25998289.

Blackman SM, Raghinaru D, Adi S, Simmons JH, Ebner Lyon L, Chase HP. Insulin pump use in young children in the T1D exchange clinic registry is associated with lower hemoglobin A1c levels than injection therapy. Pediatr Diabetes. 2014;15(8):564-72. doi: 10.1111/pedi.12121, PMID 24494980.

Willi SM, Miller KM, DI Meglio LA, Klingensmith GJ, Simmons JH, Tamborlane WV. Racial ethnic disparities in management and outcomes among children with type 1 diabetes. Pediatrics. 2015;135(3):424-34. doi: 10.1542/peds.2014-1774, PMID 25687140.

Maikawa CL, Chen PC, Vuong ET, Nguyen LT, Mann JL, D aquino AI. Ultra fast insulin pramlintide co-formulation for improved glucose management in diabetic rats. Adv Sci (Weinh). 2021;8(21):e2101575. doi: 10.1002/advs.202101575, PMID 34499434.

Nawaz MS, Shah KU, Khan TM, Rehman AU, Rashid HU, Mahmood S. Evaluation of current trends and recent development in insulin therapy for management of diabetes mellitus. Diabetes Metab Syndr. 2017;11 Suppl 2:S833-9. doi: 10.1016/j.dsx.2017.07.003, PMID 28709853.

Marin Garaundo E, Torre Beteta RL, Munive Degregori A, Alvitez J, Barja Ore J, Mayta Tovalino F. Use of artificial pancreas in the management of diabetes mellitus: a bibliometric study. Saudi J Med Med Sci. 2023;11(4):332-8. doi: 10.4103/sjmms.sjmms_12_23, PMID 37970460.

Breton MD, Kanapka LG, Beck RW, Ekhlaspour L, Forlenza GP, Cengiz E. A randomized trial of closed loop control in children with type 1 diabetes. N Engl J Med. 2020 Aug;383(9):836-45. doi: 10.1056/NEJMoa2004736, PMID 32846062.

DE Jongh D, Bunnik E, Ozcan B, Zietse R, Massey E, Vanguard Consortium. The bio-artificial pancreas to treat type 1 diabetes: perspectives from healthcare professionals in the netherlands. J Clin Transl Endocrinol. 2024;38:100372. doi: 10.1016/j.jcte.2024.100372, PMID 39502713.

Romer AI, Sussel L. Pancreatic islet cell development and regeneration. Curr Opin Endocrinol Diabetes Obes. 2015;22(4):255-64. doi: 10.1097/MED.0000000000000174, PMID 26087337.

Farhadieh RD, Bulstrode N, Cugno S. Plastic and reconstructive surgery: Approaches and techniques; 2015.

DE Bueno M, LGB. 3D modeling for comparison of surgically treated intracranial arachnoid cysts in children. Biomed J Sci Tech Res. 2018;10(3):1.

Hopt UT, Drognitz O. Pancreas organ transplantation. Short and long term results in terms of diabetes control. Langenbecks Arch Surg. 2000;385(6):379-89. doi: 10.1007/s004230000124, PMID 11127521.

Hasse JM. Nutrition assessment and support of organ transplant recipients. JPEN J Parenter Enteral Nutr. 2001;25(3):120-31. doi: 10.1177/0148607101025003120, PMID 11334061.

Snydman DR. Infection in solid organ transplantation. Transpl Infect Dis. 1999;1(1):21-8. doi: 10.1034/j.1399-3062.1999.10103.x, PMID 11428968.

Kotton CN, Kumar D, Caliendo AM, Asberg A, Chou S, Snydman DR. International consensus guidelines on the management of cytomegalovirus in solid organ transplantation. Transplantation. 2010;89(7):779-95. doi: 10.1097/TP.0b013e3181cee42f, PMID 20224515.

Paya CV. Fungal infections in solid organ transplantation. Clin Infect Dis. 1993;16(5):677-88. doi: 10.1093/clind/16.5.677, PMID 8507760.

Kelly C, Parke HG, McCluskey JT, Flatt PR, MC Clenaghan NH. The role of glucagon and somatostatin secreting cells in the regulation of insulin release and beta cell function in heterotypic pseudoislets. Diabetes Metab Res Rev. 2010;26(7):525-33. doi: 10.1002/dmrr.1111, PMID 20718077.

Bernard AB, Lin CC, Anseth KS. A microwell cell culture platform for the aggregation of pancreatic β-cells. Tissue Eng Part C Methods. 2012;18(8):583-92. doi: 10.1089/ten.TEC.2011.0504, PMID 22320435.

Dunbar CE, High KA, Joung JK, Kohn DB, Ozawa K, Sadelain M. Gene therapy comes of age. Science. 2018;359(6372):eaan4672. doi: 10.1126/science.aan4672, PMID 29326244.

XU R, LI H, Lai Yin T, Hsiang FU K, LU H, Lam KS. Diabetes gene therapy: potential and challenges. Curr Gene Ther. 2003;3(1):65-82. doi: 10.2174/1566523033347444.

Wong MS, Hawthorne WJ, Manolios N. Gene therapy in diabetes. Self Nonself. 2010;1(3):165-75. doi: 10.4161/self.1.3.12643, PMID 21487475.

Tuduri E, Bruin JE, Kieffer TJ. Restoring insulin production for type 1 diabetes. J Diabetes. 2012;4(4):319-31. doi: 10.1111/j.1753-0407.2012.00196.x, PMID 22429761.

Jaen ML, Vila L, Elias I, Jimenez V, Rodo J, Maggioni L. Long term efficacy and safety of insulin and glucokinase gene therapy for diabetes: 8 y follow up in dogs. Mol Ther Methods Clin Dev. 2017 Apr 5;6:1-7. doi: 10.1016/j.omtm.2017.03.008, PMID 28626777.

Torchilin VP. Recent approaches to intracellular delivery of drugs and DNA and organelle targeting. Annu Rev Biomed Eng. 2006;8:343-75. doi: 10.1146/annurev.bioeng.8.061505.095735, PMID 16834560.

Mali S. Delivery systems for gene therapy. Indian J Hum Genet. 2013 Jan;19(1):3-8. doi: 10.4103/0971-6866.112870, PMID 23901186.

Kaufmann KB, Buning H, Galy A, Schambach A, Grez M. Gene therapy on the move. EMBO Mol Med. 2013;5(11):1642-61. doi: 10.1002/emmm.201202287, PMID 24106209.

Yamaoka T. Gene therapy for diabetes mellitus. Curr Mol Med. 2001;1(3):325-37. doi: 10.2174/1566524013363717, PMID 11899081.

Bevacqua RJ, Dai X, Lam JY, GU X, Friedlander MS, Tellez K. CRISPR based genome editing in primary human pancreatic islet cells. Nat Commun. 2021;12(1):2397. doi: 10.1038/s41467-021-22651-w, PMID 33893274.

Wang CH, Lundh M, FU A, Kriszt R, Huang TL, Lynes MD. CRISPR engineered human brown like adipocytes prevent diet induced obesity and ameliorate metabolic syndrome in mice. Sci Transl Med. 2020;12(558):eaaz8664. doi: 10.1126/scitranslmed.aaz8664, PMID 32848096.

RGX-314 Gene therapy administered in the suprachoroidal space for participants with diabetic retinopathy without center involved diabetic macular edema (ci-dme). AbbVie. NCT04567550; 2023.

Extension of phase 3 gene therapy for painful diabetic neuropathy. Helixmith Co, Ltd. NCT04055090; 2023.

P53 gene therapy in treatment of diabetes concurrent with hepatocellular carcinoma. Shenzhen SI Biono GeneTech Co. Ltd. NCT02561546; 2015.

Gene therapy for painful diabetic neuropathy. Helixmith Co, Ltd. NCT01002235; 2019.

Phase. 3 Gene therapy for painful diabetic neuropathy. Helixmith Co, Ltd. NCT02427464; 2022.

Gene therapy to improve wound healing in patients with diabetes. Tissue repair company. NCT00065663; 2007.

VEGF Gene Transfer for Diabetic Neuropathy. Losordo Douglas M. D. NCT00056290; 2010.

ADVM-022 Intravitreal gene therapy for dme. Adverum Biotechnologies Inc. NCT04418427; 2023.

Mccall MD, Toso C, Baetge EE, Shapiro AM. Are stem cells a cure for diabetes? Clin Sci (Lond). 2009;118(2):87-97. doi: 10.1042/CS20090072, PMID 19807695.

Sheik Abdulazeez S. Diabetes treatment: a rapid review of the current and future scope of stem cell research. Saudi Pharm J. 2015;23(4):333-40. doi: 10.1016/j.jsps.2013.12.012, PMID 27134533.

Bonner Weir S, Baxter LA, Schuppin GT, Smith FE. A second pathway for regeneration of adult exocrine and endocrine pancreas a possible recapitulation of embryonic development. Diabetes. 1993;42(12):1715-20. doi: 10.2337/diab.42.12.1715, PMID 8243817.

Elbahwy IA, Ibrahim HM, Ismael HR, Kasem AA. Enhancing bioavailability and controlling the release of glibenclamide from optimized solid lipid nanoparticles. J Drug Deliv Sci Technol. 2017 Apr;38:78-89. doi: 10.1016/j.jddst.2017.02.001.

Mumuni MA, Kenechukwu FC, Ofokansi KC, Attama AA, Diaz DD. Insulin loaded mucoadhesive nanoparticles based on mucin chitosan complexes for oral delivery and diabetes treatment. Carbohydr Polym. 2020;229:115506. doi: 10.1016/j.carbpol.2019.115506, PMID 31826394.

Liu Y, Zeng S, JI W, Yao H, Lin L, Cui H. Emerging theranostic nanomaterials in diabetes and its complications. Adv Sci (Weinh). 2022;9(3):e2102466. doi: 10.1002/advs.202102466, PMID 34825525.

Yan Y, Cai H, Yang M. The application of nanotechnology for the diagnosis and treatment of endocrine disorders: a review of current trends toxicology and future perspective. Int J Nanomedicine. 2024 Sep 25;19:9921-42. doi: 10.2147/IJN.S477835, PMID 39345911.

Published

07-03-2025

How to Cite

DHYANI, S., BUTOLA, M., SAUTHA, V., & JAKHMOLA, V. (2025). RECENT ADVANCES IN TREATMENT APPROACHES FOR DIABETES MELLITUS AND RELATED COMPLICATIONS: A REVIEW. International Journal of Applied Pharmaceutics, 17(2), 12–30. https://doi.org/10.22159/ijap.2025v17i2.53184

Issue

Section

Review Article(s)

Similar Articles

<< < 4 5 6 7 8 > >> 

You may also start an advanced similarity search for this article.