MOLECULAR DOCKING AND DYNAMIC SIMULATION ON PLA2, NIK, COX-2, AND IRAK-4 INHIBITORS AS ANTIPHLOGISTIC AGENTS IN ZINGIBER OFFICINALIS

Authors

  • CHAYA H. Department of Pharmaceutical Chemistry, NGSM Institute of Pharmaceutical Sciences, NITTE, (Deemed to be University), Paneer, Deralakatte, Karnataka-575018, India https://orcid.org/0009-0005-6532-0253
  • CHAYA P. L. Department of Pharmaceutical Chemistry, NGSM Institute of Pharmaceutical Sciences, NITTE, (Deemed to be University), Paneer, Deralakatte, Karnataka-575018, India
  • AKSHATHA MUDIGERE Department of Pharmaceutical Chemistry, NGSM Institute of Pharmaceutical Sciences, NITTE, (Deemed to be University), Paneer, Deralakatte, Karnataka-575018, India
  • JANE B. MATHEW Department of Pharmaceutical Chemistry, NGSM Institute of Pharmaceutical Sciences, NITTE, (Deemed to be University), Paneer, Deralakatte, Karnataka-575018, India https://orcid.org/0000-0003-1792-4106
  • ZAKIYA FATHIMA Department of Pharmaceutical Chemistry, NGSM Institute of Pharmaceutical Sciences, NITTE, (Deemed to be University), Paneer, Deralakatte, Karnataka-575018, India https://orcid.org/0000-0001-9504-7028
  • DURGESH PARESH BIDYE Computer Aided Drug Design Laboratory, Department of Pharmaceutical Chemistry, JSS College of Pharmacy Mysore, JSS Academy of Higher Education and Research, Mysore-570015, Karnataka, India https://orcid.org/0000-0003-1331-4642
  • SHESHAGIRI DIXIT Computer Aided Drug Design Laboratory, Department of Pharmaceutical Chemistry, JSS College of Pharmacy Mysore, JSS Academy of Higher Education and Research, Mysore-570015, Karnataka, India https://orcid.org/0000-0003-3966-7278

DOI:

https://doi.org/10.22159/ijap.2025v17i3.53436

Keywords:

Anti-inflammatory, COX-2, Irak-4, PLA2, NF-kB, Molecular docking, Dynamics

Abstract

Objective: Zingiber officinalis (ginger) rhizomes are widely recognised for their health benefits, but the leaves, primarily used as flavouring agents, have not been explored for therapeutic potential. This study investigates the antiphlogistic properties of Z. Officinalis leaf constituents through molecular docking and dynamic simulation of 24 bioactive molecules identified via Gas Chromatography-Mass Spectroscopy (GC-MS), with a focus on pro-inflammatory gene suppression and inflammatory cell apoptosis induction.

Methods: Docking studies were conducted using Schrödinger software (version 2023-1) on secondary metabolites from aqueous and methanolic extracts of Z. officinalis leaves against Cyclooxygenase-2 (COX-2), Interleukin-1 receptor-associated kinase-4 (IRAK-4), Phospholipase A2 (PLA2), and NF-kB-inducing kinase (NF-kB) targets. Physicochemical and pharmacokinetic properties were assessed with the QikProp module. MMGBSA simulations evaluated protein-ligand interactions, and molecular dynamics assessed protein adaptation under physiological conditions.

Results: Compound Pterin-6-carboxylic acid exhibited an excellent docking score with the target NF-kB compared to standard Diclofenac. Compounds such as Cyclopropane pentanoic acid 2-undecyl and 14-pentyl bicyclohexyl-4-carbonamide showed docking scores of-8.586 kcal/mol and-7.759 kcal/mol, respectively, against COX-2 and IRAK-4. Cyclopropane pentanoic acid 2-undecyl also demonstrated a score of-7.279 kcal/mol against IRAK-4. MMGBSA showed consistent binding free energies, and pharmacokinetic properties were within acceptable limits. The simulation study generated the stability of the protein-ligand complex and found that Pterin-6-carboxylic acid showed a stable complex with 4UY1.

Conclusion: Pterin-6-carboxylic acid and Cyclopropane pentanoic acid 2-undecyl demonstrate significant anti-inflammatory potential. These findings suggest their promise for developing anti-inflammatory drugs, though further in vitro and in vivo studies are required to confirm their therapeutic viability.

References

Yuan G, Wahlqvist ML, HE G, Yang M, LI D. Natural products and anti-inflammatory activity. Asia Pac J Clin Nutr. 2006;15(2):143-52. PMID 16672197.

Herowati R, Widodo GP. Molecular docking analysis: interaction studies of natural compounds to anti-inflammatory targets. In: Kandemirli F, editor. Quantitative structural activity relationship. In Tech; 2017. doi: 10.5772/intechopen.68666.

Varrassi G, Coluzzi F, Fornasari D, Fusco F, Gianni W, Guardamagna VA. New perspectives on the adverse effects of nsaids in cancer pain: an italian delphi study from the rational use of analgesics (RUA) group. J Clin Med. 2022;11(24):7451. doi: 10.3390/jcm11247451, PMID 36556066.

Murakami M, Kudo I. Phospholipase A2. J Biochem. 2002;131(3):285-92. doi: 10.1093/oxfordjournals.jbchem.a003101, PMID 11872155.

Hawkey CJ. COX-2 inhibitors. Lancet. 1999;353(9149):307-14. doi: 10.1016/s0140-6736(98)12154-2, PMID 9929039.

Ambily PG, Mathew J, Sudhina M. Analysis of leaf extract of Zingiber officinale by a hybrid analytical technique. Curr Trends Biotechnol Pharm. 2022;16(3):316-28.

Kalgutkar AS, Crews BC, Rowlinson SW, Marnett AB, Kozak KR, Remmel RP. Biochemically based design of cyclooxygenase-2 (COX-2) inhibitors: facile conversion of nonsteroidal anti-inflammatory drugs to potent and highly selective COX-2 inhibitors. Proc Natl Acad Sci USA. 2000;97(2):925-30. doi: 10.1073/pnas.97.2.925, PMID 10639181.

Umar S, Palasiewicz K, Van Raemdonck K, Volin MV, Romay B, Amin MA. IRAK4 inhibition: a promising strategy for treating RA joint inflammation and bone erosion. Cell Mol Immunol. 2021;18(9):2199-210. doi: 10.1038/s41423-020-0433-8, PMID 32415262.

Otto G. IRAK4 inhibitor attenuates inflammation. Nat Rev Rheumatol. 2021;17(11):646. doi: 10.1038/s41584-021-00699-8, PMID 34584262.

Danto SI, Shojaee N, Singh RS, LI C, Gilbert SA, Manukyan Z. Safety tolerability pharmacokinetics and pharmacodynamics of PF-06650833 a selective interleukin-1 receptor-associated kinase 4 (IRAK4) inhibitor in single and multiple ascending dose randomized phase 1 studies in healthy subjects. Arthritis Res Ther. 2019;21(1):269. doi: 10.1186/s13075-019-2008-6, PMID 31805989.

Stylianou E, Saklatvala J. Interleukin-1. Int J Biochem Cell Biol. 1998;30(10):1075-9. doi: 10.1016/s1357-2725(98)00081-8, PMID 9785472.

Varrassi G, Coluzzi F, Fornasari D, Fusco F, Gianni W, Guardamagna VA. New perspectives on the adverse effects of NSAIDs in cancer pain: an Italian Delphi study from the rational use of analgesics (RUA) group. J Clin Med. 2022;11(24):7451. doi: 10.3390/jcm11247451, PMID 36556066.

Zarghi A, Arfaei S. Selective COX-2 inhibitors: a review of their structure-activity relationships. Iran J Pharm Res. 2011;10(4):655-83. PMID 24250402, PMCID PMC3813081.

Nageswara Rao R, Meena S, Raghuram Rao A. An overview of the recent developments in analytical methodologies for determination of COX-2 inhibitors in bulk drugs, pharmaceuticals and biological matrices. J Pharm Biomed Anal. 2005;39(3-4):349-63. doi: 10.1016/j.jpba.2005.03.040, PMID 16009523.

Bennett J, Starczynowski DT. IRAK1 and IRAK4 as emerging therapeutic targets in hematologic malignancies. Curr Opin Hematol. 2022;29(1):8-19. doi: 10.1097/MOH.0000000000000693, PMID 34743084, PMCID PMC8654269.

Garcia Manero G, Platzbecker U, Lim KH, Nowakowski G, Abdel Wahab O, Kantarjian H. Research and clinical updates on IRAK4 and its roles in inflammation and malignancy: themes and highlights from the 1st symposium on IRAK4 in cancer. Front Hematol. 2024;3. doi: 10.3389/frhem.2024.1339870.

Bai YR, Yang WG, Hou XH, Shen DD, Zhang SN, LI Y. The recent advance of interleukin-1 receptor-associated kinase 4 inhibitors for the treatment of inflammation and related diseases. Eur J Med Chem. 2023;258:115606. doi: 10.1016/j.ejmech.2023.115606, PMID 37402343.

Surabhi S, Singh BK. Computer-aided drug design: an overview. J Drug Delivery Ther. 2018;8(5):504-9. doi: 10.22270/jddt.v8i5.1894.

YU W, MacKerell AD. Computer-aided drug design methods. Antibiotics. Methods Protoc. 2017:85-106.

Nascimento IJ, DE Aquino TM, DA Silva Junior EF. The new era of drug discovery: the power of computer-aided drug design (CADD). Lett Drug Des Discov. 2022;19(11):951-5. doi: 10.2174/1570180819666220405225817.

Bharatam PV. Computer-aided drug design. In: Poduri R, editor. Drug discovery and development. Singapore: Springer Singapore. 2021. p. 137-210. doi: 10.1007/978-981-15-5534-3_6.

B Mathew JB, Fathima Z, Raviraj C, Mathew A. Quantitative estimation of mangiferin and molecular docking simulation of Salacia reticulata formulation. Res J Pharm Technol. 2024;17(2):578-84. doi: 10.52711/0974-360X.2024.00090.

Fathima CZ, James JP, Srinivasa MG, TJS, MJ, Revanasiddappa BC, Ghate DS. Investigating multitarget potential of Mucuna pruriens against parkinsons disease: insights from molecular docking MMGBSA pharmacophore modeling MD simulations and ADMET analysis. Int J Appl Pharm. 2024;16(5):176-93.

Srinivasa MG, Kumar DU, Mehta CH, Nayak UY, Revanasiddappa BC. In silico studies of (Z)-3-(2-chloro-4-nitrophenyl)-5-(4-nitrobenzylidene)-2-Thioxothiazolidin-4-One derivatives as PPAR-γ agonist: design molecular docking MM-GBSA assay toxicity predictions DFT calculations and MD simulation studies. J Comput. Biophys Chem. 2024;23(1):117-36.

Zakiya Fathima C, James JP, Dwivedi PS, Sindhu TJ. Molecular docking pharmacophore modeling 3d qsar molecular dynamics simulation and mmpbsa studies on hydrazine linked thiazole analogues as mao-b inhibitors. J Comput Biophys Chem. 2024:1-24. doi: 10.1142/S2737416524500790.

Thomsen R, Christensen MH. Mol dock: a new technique for high accuracy molecular docking. J Med Chem. 2006;49(11):3315-21. doi: 10.1021/jm051197e, PMID 16722650.

Meng XY, Zhang HX, Mezei M, Cui M. Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des. 2011;7(2):146-57. doi: 10.2174/157340911795677602, PMID 21534921.

Sengupta S, Bhowmik R, Acharjee S, Sen S. In silico modeling of 1-3-[3-(substituted phenyl) prop-2-enoyl phenyl thiourea against anti-inflammatory drug targets. Biosci Biotechnol Res Asia. 2021;18(2):413.

Abdelshafeek KA, Osman AF, Mouneir SM, Elhenawy AA, Abdallah WE. Phytochemical profile comparative evaluation of Satureja montana alcoholic extract for antioxidants anti-inflammatory and molecular docking studies. BMC Complement Med Ther. 2023;23(1):108. doi: 10.1186/s12906-023-03913-0, PMID 37024878.

Sengupta S, Bhowmik R, Acharjee S, Sen S. In-silico-modelling-of-1-3-3-substituted-phenyl-prop-2-enoyl-phenyl-thiourea-against-anti-inflammatory-drug-targets/. Biosci Biotechnol Res Asia. 2021;18(2):413-21. doi: 10.13005/bbra/2928.

Abdelshafeek KA, Osman AF, Mouneir SM, Elhenawy AA, Abdallah WE. Phytochemical profile comparative evaluation of Satureja montana alcoholic extract for antioxidants anti-inflammatory and molecular docking studies. BMC Complement Med Ther. 2023;23(1):108. doi: 10.1186/s12906-023-03913-0, PMID 37024878.

El-Saghier AM, Enaili SS, Abdou A, Hamed AM, Kadry AM. Synthesis docking and biological evaluation of purine-5-N-isosteresas anti-inflammatory agents. RSC Adv. 2024;14(25):17785-800. doi: 10.1039/d4ra02970d, PMID 38832248.

Varghese SS, Mathews SM. A simulation approach for novel 1,3,4 thiadiazole acetamide moieties as potent antimycobacterial agents. Int J Pharm Pharm Sci. 2024;16(7):40-7. doi: 10.22159/ijpps.2024v16i7.51356.

Poleboyina PK, Pawar SC. Comparative analysis of small molecules and natural plant compounds as therapeutic inhibitors targeting RDRP and nucleocapsid proteins of SARS COV 2: an in silico approach. Asian J Pharm Clin Res. 2023;16(10):208-28. doi: 10.22159/ajpcr.2023.v16i10.48095.

Achdeo R, Khanwelkar C, Shete A. In silico exploration of berberine as a potential wound healing agent via network pharmacology molecular docking and molecular dynamics simulation. Int J Appl Pharm. 2024;16(2):188-94.

James JP, Devaraji V, Sasidharan P, Pavan TS. Pharmacophore modeling 3D QSAR molecular dynamics studies and virtual screening on pyrazolopyrimidines as anti-breast cancer agents. Polycyclic Aromat Compd. 2023 Sep 14;43(8):7456-73. doi: 10.1080/10406638.2022.2135545.

Srinivasa MG, Shivakumar DU, Kumar DU, Mehta CH, Nayak UY, Revanasiddappa BC. In silico studies of (z)-3-(2-chloro-4-nitrophenyl)-5-(4-nitrobenzylidene)-2-thioxothiazolidin-4-one derivatives as ppar-γ agonist: design molecular docking mm-gbsa assay toxicity predictions dft calculations and md simulation studies. J Comput Biophys Chem. 2024;23(1):117-36. doi: 10.1142/S2737416523500540.

Carmona Martinez V, Ruiz Alcaraz AJ, Vera M, Guirado A, Martinez Esparza M, Garcia Penarrubia P. Therapeutic potential of pteridine derivatives: a comprehensive review. Med Res Rev. 2019 Mar;39(2):461-516. doi: 10.1002/med.21529, PMID 30341778.

Pontiki E, Hadjipavlou Litina D, Patsilinakos A, Tran TM, Marson CM. Pteridine‐2,4‐diamine derivatives as radical scavengers and inhibitors of lipoxygenase that can possess anti‐inflammatory properties. Future Med Chem. 2015;7(14):1937-51. doi: 10.4155/fmc.15.104, PMID 26423719.

DE Jonghe S, Marchand A, Gao LJ, Calleja A, Cuveliers E, Sienaert I. Synthesis and in vitro evaluation of 2‐amino‐4‐N‐piperazinyl‐6‐(3,4‐dimethoxyphenyl)‐pteridines as dual immunosuppressive and anti‐inflammatory agents. Bioorg Med Chem Lett. 2011;21(1):145-9. doi: 10.1016/j.bmcl.2010.11.053, PMID 21131199.

Shen C, Dillissen E, Kasran A, Lin Y, Herman J, Sienaert I. Immunosuppressive activity of a new pteridine derivative (4AZA1378) alleviates severity of TNBS‐induced colitis in mice. Clin Immunol. 2007;122(1):53-61. doi: 10.1016/j.clim.2006.09.007, PMID 17070110.

Shen C, Dillissen E, Kasran A, Lin Y, Clydesdale G, Sienaert I. Anti‐inflammatory activity of a pteridine derivative (4AZA2096) alleviates TNBS‐induced colitis in mice. J Interferon Cytokine Res. 2006;26(8):575-82. doi: 10.1089/jir.2006.26.575, PMID 16881868.

Shen Z, HU H, Pan J, XU M, OU F, HE K. Pharmacokinetics and brain distribution studies of 6-hydroxykynurenic acid and its structural modified compounds. J Pharm Pharmacol. 2022 Jan;74(1):22-31. doi: 10.1093/jpp/rgab132, PMID 34586411.

Peesa JP, Atmakuri LR, Yalavarthi PR, Mandava Venkata BR, Rasheed A, Pachava V. Oxaprozin prodrug as safer nonsteroidal anti‐inflammatory drug: synthesis and pharmacological evaluation. Arch Pharmazie. 2018 Feb;351(2):1700256. doi: 10.1002/ardp.201700256, PMID 29283449.

Denburg D. Quantum mechanics-based computational chemistry has become a powerful partner in the scientific research of nitrogen-rich compounds, paving the way for important advances in biochemical, pharmacological and other related fields; 2021.

Gao Y, Duan L, Guan S, Gao G, Cheng Y, Ren X. The effect of hydrophobic alkyl chain length on the mechanical properties of latex particle hydrogels. RSC Adv. 2017;7(71):44673-9. doi: 10.1039/C7RA07983D.

Sun Z, Chai L, Shu Y, LI Q, Liu M, Qiu D. Chemical bond between chloride ions and surface carboxyl groups on activated carbon. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2017;530:53-9. doi: 10.1016/j.colsurfa.2017.06.077.

Balaji B, Ramanathan M. Prediction of estrogen receptor β ligands potency and selectivity by docking and MM-GBSA scoring methods using three different scaffolds. J Enzyme Inhib Med Chem. 2012;27(6):832-44. doi: 10.3109/14756366.2011.618990, PMID 21999568.

Published

07-05-2025

How to Cite

H., C., L., C. P., MUDIGERE, A., MATHEW, J. B., FATHIMA, Z., BIDYE, D. P., & DIXIT, S. (2025). MOLECULAR DOCKING AND DYNAMIC SIMULATION ON PLA2, NIK, COX-2, AND IRAK-4 INHIBITORS AS ANTIPHLOGISTIC AGENTS IN ZINGIBER OFFICINALIS. International Journal of Applied Pharmaceutics, 17(3), 328–335. https://doi.org/10.22159/ijap.2025v17i3.53436

Issue

Section

Original Article(s)

Similar Articles

<< < 71 72 73 74 75 > >> 

You may also start an advanced similarity search for this article.