REVOLUTIONIZING DRUG DEVELOPMENT: HOW AI AND MACHINE LEARNING ARE SHAPING THE FUTURE OF MEDICINE-A REVIEW

Authors

  • GIRIDHARA M. Department of Pharmaceutics, JSS College of Pharmacy, Ooty, Nilgiris, Tamil Nadu, India https://orcid.org/0009-0004-5611-2156
  • GURUBARAN S. Department of Pharmaceutics, JSS College of Pharmacy, Ooty, Nilgiris, Tamil Nadu, India https://orcid.org/0009-0000-6386-1201
  • SANJAI RAJAGOPAL Department of Pharmaceutics, JSS College of Pharmacy, Ooty, Nilgiris, Tamil Nadu, India https://orcid.org/0009-0000-3399-0520
  • GOWTHAM ANGAMUTHU Department of Pharmaceutical Regulatory Affairs, JSS College of Pharmacy, Ooty, Nilgiris, JSS Academy of Higher Education and Research, Mysuru, Tamil Nadu, India https://orcid.org/0009-0008-3866-3885
  • NAGASAMY VENKATESH DHANDAPANI Department of Pharmaceutics, JSS College of Pharmacy, Ooty, Nilgiris, Tamil Nadu, India https://orcid.org/0000-0002-5361-3586

DOI:

https://doi.org/10.22159/ijap.2025v17i3.53457

Keywords:

Artificial intelligence, Machine learning, Drug development, Preclinical studies, Clinical studies

Abstract

AI and Machine Learning are revolutionizing drug development, which was previously characterized as being complicated, time-consuming, and costly. Through the application of enormous biomedical data and high-performance computing capabilities, AI/ml algorithms speed up different aspects of drug discovery, such as target identification, lead optimization, and clinical trial design. The technologies uncover intricate biological patterns, making it possible to have personalized treatments and more effective drug targeting at the bedside.

AI methods have demonstrated phenomenal success in protein structure prediction, virtual compound screening, and de novo drug design, shortening project duration from years to weeks. Some of the highlights are Alpha Fold's record-breaking accuracy in protein structure predictions by DeepMind and Deep Tox's 86% accuracy for predicting toxicity. Neural networks have reached 92% accuracy in predicting protein-protein interactions, while AI integrated with organ-on-chip systems has cut down early-stage drug screening time by 60% and enhanced prediction accuracy by 40%. Joint efforts such as melloddy allow the pharmaceutical industry to collaborate without compromising data privacy and security measures.

However considerable issues remain around data quality, interpretability of models, and regulation compliance in the pharma industry. Advances in AI in the future, fueled by cross-disciplinary cooperation and ongoing technological progress, will play a vital role in surmounting these issues and making AI/ml bring about revolutionary changes in drug discovery to make therapies more available and affordable to global patients. The science keeps on unfolding, tipping the balance between potential transformation and built-in complexities in pharmaceutical usage.

References

DI Masi JA, Grabowski HG, Hansen RW. Innovation in the pharmaceutical industry: new estimates of R & D costs. J Health Econ. 2016 May;47:20-33. doi: 10.1016/j.jhealeco.2016.01.012, PMID 26928437.

Vamathevan J, Clark D, Czodrowski P, Dunham I, Ferran E, Lee G. Applications of machine learning in drug discovery and development. Nat Rev Drug Discov. 2019 Jun;18(6):463-77. doi: 10.1038/s41573-019-0024-5, PMID 30976107, PMCID PMC6552674.

Malkawi R. Revolutionizing drug delivery innovation: leveraging AI-driven Chatbots for enhanced efficiency. Int J App Pharm. 2024;16(2):52-6. doi: 10.22159/ijap.2024v16i2.50182.

Schneider G. Automating drug discovery. Nat Rev Drug Discov. 2018 Feb;17(2):97-113. doi: 10.1038/nrd.2017.232, PMID 29242609.

Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O. Highly accurate protein structure prediction with alpha fold. Nature. 2021 Aug;596(7873):583-9. doi: 10.1038/s41586-021-03819-2, PMID 34265844, PMCID PMC8371605.

Zitnik M, Nguyen F, Wang B, Leskovec J, Goldenberg A, Hoffman MM. Machine learning for integrating data in biology and medicine: principles practice and opportunities. Inf Fusion. 2019 Oct;50:71-91. doi: 10.1016/j.inffus.2018.09.012, PMID 30467459, PMCID PMC6242341.

Schork NJ. Artificial intelligence and personalized medicine. Cancer Treat Res. 2019;178:265-83. doi: 10.1007/978-3-030-16391-4_11, PMID 31209850, PMCID PMC7580505.

Bzdok D, Altman N, Krzywinski M. Statistics versus machine learning. Nat Methods. 2018 Apr;15(4):233-4. doi: 10.1038/nmeth.4642, PMID 30100822, PMCID PMC6082636.

Zitnik M, Agrawal M, Leskovec J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics. 2018 Jul 1;34(13):i457-66. doi: 10.1093/bioinformatics/bty294, PMID 29949996, PMCID PMC6022705.

Jastrzebski S, Lesniak D, Czarnecki WM. Learning to smile (s). Arxiv Preprint arXiv: 1602.06289; 2016 Feb 19.

Stokes JM, Yang K, Swanson K, Jin W, Cubillos Ruiz A, Donghia NM. A deep learning approach to antibiotic discovery. Cell. 2020;181(2):475-83. doi: 10.1016/j.cell.2020.04.001, PMID 32302574.

Gomez Bombarelli R, Wei JN, Duvenaud D, Hernandez Lobato JM, Sanchez Lengeling B, Sheberla D. Automatic chemical design using a data driven continuous representation of molecules. ACS Cent Sci. 2018 Feb 28;4(2):268-76. doi: 10.1021/acscentsci.7b00572, PMID 29532027, PMCID PMC5833007.

You J, Liu B, Ying Z, Pande V, Leskovec J. Graph convolutional policy network for goal-directed molecular graph generation. Adv Neural Inf Process Syst. 2018;31.

Ozturk H, Ozgur A, Ozkirimli E. Deep DTA: deep drug-target binding affinity prediction. Bioinformatics. 2018 Sep 1;34(17):i821-9. doi: 10.1093/bioinformatics/bty593, PMID 30423097, PMCID PMC6129291.

Lim J, Ryu S, Park K, Choe YJ, Ham J, Kim WY. Predicting drug target interaction using a novel graph neural network with 3D structure embedded graph representation. J Chem Inf Model. 2019 Sep 23;59(9):3981-8. doi: 10.1021/acs.jcim.9b00387, PMID 31443612.

Zhavoronkov A, Ivanenkov YA, Aliper A, Veselov MS, Aladinskiy VA, Aladinskaya AV. Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nat Biotechnol. 2019 Sep;37(9):1038-40. doi: 10.1038/s41587-019-0224-x, PMID 31477924.

Polykovskiy D, Zhebrak A, Vetrov D, Ivanenkov Y, Aladinskiy V, Mamoshina P. Entangled conditional adversarial autoencoder for de novo drug discovery. Mol Pharm. 2018 Oct 1;15(10):4398-405. doi: 10.1021/acs.molpharmaceut.8b00839, PMID 30180591.

Mayr A, Klambauer G, Unterthiner T, Hochreiter S. Deep Tox: toxicity prediction using deep learning. Front Environ Sci. 2016 Feb 2;3:80. doi: 10.3389/fenvs.2015.00080.

Withnall M, Lindelof E, Engkvist O, Chen H. Building attention and edge message passing neural networks for bioactivity and physical-chemical property prediction. J Cheminform. 2020 Jan 8;12(1):1. doi: 10.1186/s13321-019-0407-y, PMID 33430988, PMCID PMC6951016.

Hou T, Wang J, Zhang W, XU X. ADME evaluation in drug discovery. 7. Prediction of oral absorption by correlation and classification. J Chem Inf Model. 2007 Jan-Feb;47(1):208-18. doi: 10.1021/ci600343x, PMID 17238266.

Yang K, Swanson K, Jin W, Coley C, Eiden P, Gao H. Correction to analyzing learned molecular representations for property prediction. J Chem Inf ModelJ Chem Inf Model. 2019;59(12):5304-5. doi: 10.1021/acs.jcim.9b01076, PMID 31814400.

Rieger JK, Klein K, Winter S, Zanger UM. Expression variability of absorption distribution metabolism excretion related micro RNAs in human liver: influence of nongenetic factors and association with gene expression. Drug Metab Dispos. 2013 Oct;41(10):1752-62. doi: 10.1124/dmd.113.052126, PMID 23733276.

Eduati F, Doldan Martelli V, Klinger B, Cokelaer T, Sieber A, Kogera F. Drug resistance mechanisms in colorectal cancer dissected with cell type-specific dynamic logic models. Cancer Res. 2017 Jun 15;77(12):3364-75. doi: 10.1158/0008-5472.CAN-17-0078, PMID 28381545, PMCID PMC6433282.

Cai C, Guo P, Zhou Y, Zhou J, Wang Q, Zhang F. Deep learning based prediction of drug-induced cardiotoxicity. J Chem Inf Model. 2019 Mar 25;59(3):1073-84. doi: 10.1021/acs.jcim.8b00769, PMID 30715873, PMCID PMC6489130.

Chiu MJ, Chen TF, Yip PK, Hua MS, Tang LY. Behavioral and psychologic symptoms in different types of dementia. J Formos Med Assoc. 2006 Jul;105(7):556-62. doi: 10.1016/S0929-6646(09)60150-9, PMID 16877235.

Harrer S, Shah P, Antony B, HU J. Artificial intelligence for clinical trial design. Trends Pharmacol Sci. 2019 Aug;40(8):577-91. doi: 10.1016/j.tips.2019.05.005, PMID 31326235.

Berry SM, Broglio KR, Groshen S, Berry DA. Bayesian hierarchical modeling of patient subpopulations: efficient designs of Phase II oncology clinical trials. Clin Trials. 2013 Oct;10(5):720-34. doi: 10.1177/1740774513497539, PMID 23983156, PMCID PMC4319656.

Rajkomar A, Oren E, Chen K, Dai AM, Hajaj N, Hardt M. Scalable and accurate deep learning with electronic health records. NPJ Digit Med. 2018 May 8;1:18. doi: 10.1038/s41746-018-0029-1, PMID 31304302, PMCID PMC6550175.

XU R, Wang Q. Comparing a knowledge driven approach to a supervised machine learning approach in large scale extraction of drug side effect relationships from free text biomedical literature. BMC Bioinformatics. 2015;16 Suppl 5:S6. doi: 10.1186/1471-2105-16-S5-S6, PMID 25860223, PMCID PMC4402591.

Thorlund K, Haggstrom J, Park JJ, Mills EJ. Key design considerations for adaptive clinical trials: a primer for clinicians. BMJ. 2018 Mar 8;360:k698. doi: 10.1136/bmj.k698, PMID 29519932, PMCID PMC5842365.

Bent B, Goldstein BA, Kibbe WA, Dunn JP. Investigating sources of inaccuracy in wearable optical heart rate sensors. NPJ Digit Med. 2020 Feb 10;3:18. doi: 10.1038/s41746-020-0226-6, PMID 32047863, PMCID PMC7010823.

Bender A, Cortes Ciriano I. Artificial intelligence in drug discovery: what is realistic what are illusions? Part 1: Ways to make an impact and why we are not there yet. Drug Discov Today. 2021 Feb;26(2):511-24. doi: 10.1016/j.drudis.2020.12.009, PMID 33346134.

Sieg J, Flachsenberg F, Rarey M. In need of bias control: evaluating chemical data for machine learning in structure-based virtual screening. J Chem Inf Model. 2019 Mar 25;59(3):947-61. doi: 10.1021/acs.jcim.8b00712, PMID 30835112.

Melloddy EU. Machine learning ledger orchestration for drug discovery. Available from: https://www.melloddy.eu. [Last accessed on 18 Sep 2024].

Chen H, Engkvist O, Wang Y, Olivecrona M, Blaschke T. The rise of deep learning in drug discovery. Drug Discov Today. 2018 Jun;23(6):1241-50. doi: 10.1016/j.drudis.2018.01.039, PMID 29366762.

Arras L, Osman A, Muller KR, Samek W. Evaluating recurrent neural network explanations. Arxiv Preprint Arxiv. 2019 Apr 26;1904;1104.

Jimenez Luna J, Grisoni F, Schneider G. Drug discovery with explainable artificial intelligence. Nat Mach Intell. 2020 Oct;2(10):573-84. doi: 10.1038/s42256-020-00236-4.

Schneider P, Walters WP, Plowright AT, Sieroka N, Listgarten J, Goodnow RA JR. Rethinking drug design in the artificial intelligence era. Nat Rev Drug Discov. 2020 May;19(5):353-64. doi: 10.1038/s41573-019-0050-3, PMID 31801986.

Smalley E. AI-powered drug discovery captures pharma interest. Nat Biotechnol. 2017 Jul 12;35(7):604-5. doi: 10.1038/nbt0717-604, PMID 28700560.

Zhu H, Tropsha A, Fourches D, Varnek A, Papa E, Gramatica P. Combinatorial QSAR modeling of chemical toxicants tested against tetrahymena pyriformis. J Chem Inf Model. 2008 Apr;48(4):766-84. doi: 10.1021/ci700443v, PMID 18311912.

Mak KK, Pichika MR. Artificial intelligence in drug development: present status and future prospects. Drug Discov Today. 2019 Mar;24(3):773-80. doi: 10.1016/j.drudis.2018.11.014, PMID 30472429.

US Food and Drug Administration. Artificial intelligence/machine learning (AI/ml) based software as a medical device (SaMD) action plan; 2021.

Xia F, Shukla M, Brettin T, Garcia Cardona C, Cohn J, Allen JE. Predicting tumor cell line response to drug pairs with deep learning. BMC Bioinformatics. 2018 Dec 21;19 Suppl 18:486. doi: 10.1186/s12859-018-2509-3, PMID 30577754, PMCID PMC6302446.

US Food and Drug Administration. Digital health innovation action plan; 2017.

Morley J, Machado CC, Burr C, Cowls J, Joshi I, Taddeo M. The ethics of AI in health care: a mapping review. Soc Sci Med. 2020 Sep;260:113172. doi: 10.1016/j.socscimed.2020.113172, PMID 32702587.

Adamson AS, Smith A. Machine learning and health care disparities in dermatology. JAMA Dermatol. 2018 Nov 1;154(11):1247-8. doi: 10.1001/jamadermatol.2018.2348, PMID 30073260.

Gebru T, Morgenstern J, Vecchione B, Vaughan JW, Wallach H, Iii, Iii HD. Datasheets for datasets. Commun ACM. 2021 Nov 19;64(12):86-92. doi: 10.1145/3458723.

AI. 4 ALL. Available from: https://ai-4-all.org. [Last accessed on 18 Mar 2025].

Cao Y, Romero J, Olson JP, Degroote M, Johnson PD, Kieferova M. Quantum chemistry in the age of quantum computing. Chem Rev. 2019 Oct 9;119(19):10856-915. doi: 10.1021/acs.chemrev.8b00803, PMID 31469277.

Arute F, Arya K, Babbush R, Bacon D, Bardin JC, Barends R. Quantum supremacy using a programmable superconducting processor. Nature. 2019 Oct;574(7779):505-10. doi: 10.1038/s41586-019-1666-5, PMID 31645734.

Low LA, Mummery C, Berridge BR, Austin CP, Tagle DA. Organs on chips: into the next decade. Nat Rev Drug Discov. 2021 May;20(5):345-61. doi: 10.1038/s41573-020-0079-3, PMID 32913334.

Kaissis GA, Makowski MR, Ruckert D, Braren RF. Secure privacy-preserving and federated machine learning in medical imaging. Nat Mach Intell. 2020 Jun;2(6):305-11. doi: 10.1038/s42256-020-0186-1.

Elango V, M M, Vetrivel K, M Y, Nikam KD. 3d Printing in the pharmaceutical industry: a special consideration on medical device and its applications. Int J Appl Pharm. 2025;17(1):1-11. doi: 10.22159/ijap.2025v17i1.52354.

Published

07-05-2025

How to Cite

M., G., S., G., RAJAGOPAL, S., ANGAMUTHU, G., & DHANDAPANI, N. V. (2025). REVOLUTIONIZING DRUG DEVELOPMENT: HOW AI AND MACHINE LEARNING ARE SHAPING THE FUTURE OF MEDICINE-A REVIEW. International Journal of Applied Pharmaceutics, 17(3), 148–156. https://doi.org/10.22159/ijap.2025v17i3.53457

Issue

Section

Review Article(s)

Similar Articles

<< < 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.