INVESTIGATION OF THE APOPTOSIS MECHANISM INDUCED BY TAXUS SUMATRANA EXTRACT LEAF IN CERVICAL CANCER CELLS

Authors

  • DESI EKA PUTRI Faculty of Pharmacy, Universitas Andalas, Padang-25163, Indonesia
  • ALMAHDY ALMAHDY Faculty of Pharmacy, Universitas Andalas, Padang-25163, Indonesia https://orcid.org/0000-0002-2026-4156
  • YOZARWARDI USAMA PUTRA Dinas Kehutanan Provinsi Sumatera Barat-25114, Padang, Indonesia
  • DACHRIYANUS HAMIDI Faculty of Pharmacy, Universitas Andalas, Padang-25163, Indonesia
  • FATMA SRI WAHYUNI Faculty of Pharmacy, Universitas Andalas, Padang-25163, Indonesia https://orcid.org/0000-0002-2026-4156

DOI:

https://doi.org/10.22159/ijap.2025.v17s1.05

Keywords:

Cemara sumatra, Paclitaxel, p53, Bax, Bcl-2, HELA, Natural product

Abstract

Objective: This study aims to investigate apoptosis pathways induced by T. sumatrana leaf extract, evaluate their impact on the modulation of p53 protein expression, and the regulation of Bax and Bcl-2 gene expression.

Methods: The study included 3-5 experimental groups: untreated cells, T. sumatrana extract-treated cells (one or two concentrations), and paclitaxel-treated cells (one or two concentrations) as a positive control. The leaves were macerated in 70% ethanol to obtain the extract. Flow cytometry was employed to determine apoptosis rates and p53 protein expression. Real-time PCR was used to quantify the expression level of the Bax and Bcl-2 genes. ANOVA was utilized for statistical analysis to compare the mean differences among the groups.

Results: Treatment with the T. sumatrana extract significantly increased the apoptosis rates in HELA cells (P<0.0001) and upregulated p53 protein expression compared to the untreated cells. The extract also increased Bax and decreased Bcl-2 expression, suggesting a shift towards a pro-apoptotic stage. The extract also increased Bax and decreased Bcl-2 expression, suggesting a shift towards a pro-apoptotic stage. The effects on apoptosis and p53 expression were comparable to paclitaxel at equivalent IC50 concentrations.

Conclusion: The ethanol extract of T. sumatrana leaf promotes apoptosis in HELA cervical cancer cells by promoting p53 protein expression, increasing Bax, and decreasing Bcl-2 expression. These findings suggest its potential as an apoptosis-inducing agent, comparable to paclitaxel, and highlight its promise for further investigation in cervical cancer therapy.

References

Putri DE, Almahdy A, Hamidi D, Wahyuni FS. The potential of Taxus sumatrana as a candidate for cancer therapy. J Food Med Plants. 2023;4(1):1-7.

Wani MC, Horwitz SB. Nature as a remarkable chemist: a personal story of the discovery and development of taxol. Anti Cancer Drugs. 2014;25(5):482-7. doi: 10.1097/CAD.0000000000000063, PMID 24413390.

Sudarmin S, Diliarosta S, Pujiastuti RS, Jumini S, Tri Prasetya A. The instructional design of ethnoscience-based inquiry learning for scientific explanation about Taxus sumatrana as cancer medication. Journal for the Education of Gifted Young Scientists. 2020;8(4):1493-507. doi: 10.17478/jegys.792830.

Kitagawa I, Mahmud T, Kobayashi M, Roemantyo H, Shibuya H. Taxol and its related taxoids from the needles of Taxus sumatrana. Chem Pharm Bull (Tokyo). 1995;43(2):365-7. doi: 10.1248/cpb.43.365, PMID 7728941.

Shen YC, Wang SS, Pan YL, Lo KL, Chakraborty R, Chien CT. New taxane diterpenoids from the leaves and twigs of Taxus sumatrana. J Nat Prod. 2002;65(12):1848-52. doi: 10.1021/np0202273, PMID 12502326.

Shen YC, Pan YL, Lo KL, Wang SS, Chang YT, Wang LT. New taxane diterpenoids from taiwanese taxus sumatrana. Chem Pharm Bull (Tokyo). 2003;51(7):867-9. doi: 10.1248/cpb.51.867, PMID 12843599.

Shen YC, Cheng KC, Lin YC, Cheng YB, Khalil AT, Guh JH. Three new taxane diterpenoids from taxus sumatrana. J Nat Prod. 2005;68(1):90-3. doi: 10.1021/np040132w, PMID 15679325.

Shen YC, Lin YS, Cheng YB, Cheng KC, Khalil AT, Kuo YH. Novel taxane diterpenes from taxus sumatrana with the first C-21 taxane ester. Tetrahedron. 2005;61(5):1345-52. doi: 10.1016/j.tet.2004.10.110.

Shen YC, Hsu SM, Lin YS, Cheng KC, Chien CT, Chou CH. New bicyclic taxane diterpenoids from Taxus sumatrana. Chem Pharm Bull (Tokyo). 2005;53(7):808-10. doi: 10.1248/cpb.53.808, PMID 15997140.

Shen YC, Lin YS, Hsu SM, Khalil AT, Wang SS, Chien CT. Tasumatrols p-t, five new taxoids from taxus sumatrana. Helv Chim Acta. 2007;90(7):1319-29. doi: 10.1002/hlca.200790133.

Shen YC, Wang SS, Chien CT, Kuo YH, Khalil AT. Tasumatrols u-z, taxane diterpene esters from taxus sumatrana. J Nat Prod. 2008;71(4):576-80. doi: 10.1021/np078016r, PMID 18220355.

Wang SS, Abd El-Razek MH, Chen YC, Chien CT, Guh JH, Kuo YH. Abeo-taxane diterpenoids from the taiwanese yew taxus sumatrana. Chem Biodivers. 2009;6(12):2255-62. doi: 10.1002/cbdv.200900003, PMID 20020457.

Luh LJ, El-Razek MH, Liaw CC, Chen CT, Lin YS, Kuo YH. Tri- and bicyclic taxoids from the taiwanese yew taxus sumatrana. Helv Chim Acta. 2009;92(7):1349-58. doi: 10.1002/hlca.200900022.

Kuo WL, Chen FC, Chen KJ, Chen JJ. Taxusumatrin, a new taxoid from the stem bark of taxus sumatrana. Chem Nat Compd. 2015;51(3):427-30. doi: 10.1007/s10600-015-1308-6.

Wahyuni FS, Putri DE, Putra YU, Hamidi D. Cytotoxic activity of taxus sumatrana (Miq.) de Laub. bark, leaves, and shoots on HELA, T47D, and MCF-7/HER2 cell lines. Int J App Pharm. 2024;16(1):93-8. doi: 10.22159/ijap.2024.v16s1.23.

Zhang A, Zheng X, Chen S, Duan G. In vitro study of HPV18-positive cervical cancer HELA cells based on CRISPR/Cas13a system. Gene. 2024;921:148527. doi: 10.1016/j.gene.2024.148527, PMID 38710293.

Dong X, Zhan Y, Li S, Yang M, Gao Y. MKRN1 regulates the expression profiles and transcription factor activity in HELA cells inhibition suppresses cervical cancer cell progression. Sci Rep. 2024;14(1):6129. doi: 10.1038/s41598-024-56830-8, PMID 38480859.

Kayagaki N, Webster JD, Newton K. Control of cell death in health and disease. Annu Rev Pathol. 2024;19:157-80. doi: 10.1146/annurev-pathmechdis-051022-014433, PMID 37788577.

Newton K, Strasser A, Kayagaki N, Dixit VM. Cell death. Cell. 2024;187(2):235-56. doi: 10.1016/j.cell.2023.11.044, PMID 38242081.

AO A, MC F, Jacobs TF, Paclitaxel AO A, MC F Jacobs TF, editor. Treasure Island, (FL): Stat Pearls Publishing; 2024.

Zhao S, Tang Y, Wang R, Najafi M. Mechanisms of cancer cell death induction by paclitaxel: an updated review. Apoptosis. 2022;27(9-10):647-67. doi: 10.1007/s10495-022-01750-z, PMID 35849264.

Xu AP, Xu LB, Smith ER, Fleishman JS. Chen Z Sheng, Xu X Xi. Cell death in cancer chemotherapy using taxanes. Front Pharmacol. 2024:1-8.

Alalawy AI. Key genes and molecular mechanisms related to paclitaxel resistance. Cancer Cell Int. 2024;24(1):244. doi: 10.1186/s12935-024-03415-0, PMID 39003454.

Asma ST, Acaroz U, Imre K, Morar A, Shah SR, Hussain SZ. Natural products/bioactive compounds as a source of anticancer drugs. Cancers (Basel). 2022;14(24):6203. doi: 10.3390/cancers14246203, PMID 36551687.

Shrihastini V, Muthuramalingam P, Adarshan S, Sujitha M, Chen JT, Shin H. Plant-derived bioactive compounds, their anti-cancer effects and in silico approaches as an alternative target treatment strategy for breast cancer: an updated overview. Cancers (Basel). 2021;13(24):6222. doi: 10.3390/cancers13246222, PMID 34944840.

Leao P, Neves L, Colombo R, Shahab M, Oliveira J, Luz F. Temperature and storage periods on the maintenance of chemical composition of medicinal plants. ASB J. 2019;5(1):40. doi: 10.33158/ASB.2019v5i1p40.

Sharifi Rad J, Quispe C, Patra JK, Singh YD, Panda MK, Das G. Paclitaxel: application in modern oncology and nanomedicine-based cancer therapy. Oxid Med Cell Longev. 2021;2021:3687700. doi: 10.1155/2021/3687700, PMID 34707776.

Swain B, Singh H, Jain R, Mishra S. Association of febrile neutropenia with chemotherapeutic agents in malignancies. Asian J Pharm Clin Res. 2023;16(8):76-9. doi: 10.22159/ajpcr.2023.v16i8.48926.

Machida H, Moeini A, Ciccone MA, Mostofizadeh S, Takiuchi T, Brunette LL. Efficacy of modified dose-dense paclitaxel in recurrent cervical cancer. Am J Clin Oncol. 2018;41(9):851-60. doi: 10.1097/COC.0000000000000394, PMID 28763329.

Hu S, Jiang C, Zhang W, Fang P. Comparison of the clinical efficacy of paclitaxel +carboplatin and paclitaxel+cisplatin on tumor markers and WHOQOL-BREF score on cervical cancer patients. Eur J Gynaecol Oncol. 2023;44(6):142-9. doi: 10.22514/ejgo.2023.109.

Hassan M, Watari H, AbuAlmaaty A, Ohba Y, Sakuragi N. Apoptosis and molecular targeting therapy in cancer. BioMed Res Int. 2014;2014:1-23. doi: 10.1155/2014/150845.

Kumar JS, Prabhakaran J, Damuka N, Hines JW, Kridel SJ, Mann JJ. Evaluation of 11C MPC-6827 as a microtubule targeting pet radiotracer in cancer cell lines. Int J Pharm Pharm Sci. 2019;12(1):43-7. doi: 10.22159/ijpps.2020v12i1.35657.

Kurniawan R, Sukrasno S, Ashari A, Suhartati T. Diving into paclitaxel: isolation and screening content from taxus sumatrana at singgalang conservation center, West Sumatra. Nat Prod Res. 2024:1-5. doi: 10.1080/14786419.2024.2312540, PMID 38321599.

Holliday DL, Speirs V. Choosing correct breast cancer cell line for breast cancer research. Breast Cancer Res. 2011;13(4):1-7.

Husni E, Nahari F, Wirasti Y, Wahyuni FS, Dachriyanus. Cytotoxicity study of ethanol extract of the stem bark of asam kandis (Garcinia cowa Roxb.) on T47D breast cancer cell line. Asian Pac J Trop Biomed. 2015;5(3):249-52. doi: 10.1016/S2221-1691(15)30013-7.

Wahyuni FS, Triastuti DH, Arifin H. Cytotoxicity study of ethanol extract of the leaves of asam kandis (Garcinia cowa Roxb.) on T47D breast cancer cell line. Phcog J. 2015;7(6):369-71. doi: 10.5530/pj.2015.6.9.

Wahyuni FS, Shaari K, Stanslas J, Lajis NH, Dachriyanus. Cytotoxic xanthones from the stem bark of garcinia cowa roxb. J Chem Pharm Res. 2015;7(1):227-36.

Coecke S, Balls M, Bowe G, Davis J, Gstraunthaler G, Hartung T. Guidance on good cell culture practice a report of the second ECVAM task force on good cell culture practice. Altern Lab Anim. 2005;33(3):261-87. doi: 10.1177/026119290503300313, PMID 16180980.

Syam S, Bustamam A, Abdullah R, Sukari MA, Hashim NM, Ghaderian M. β-mangostin induces p53-dependent G2/M cell cycle arrest and apoptosis through ROS mediated mitochondrial pathway and NFkB suppression in MCF-7 cells. J Funct Foods. 2014;6(1):290-304. doi: 10.1016/j.jff.2013.10.018.

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2CT method. Methods. 2021;25:402-8.

Khing TM, Choi WS, Kim DM, Po WW, Thein W, Shin CY. The effect of paclitaxel on apoptosis, autophagy and mitotic catastrophe in AGS cells. Sci Rep. 2021;11(1):23490. doi: 10.1038/s41598-021-02503-9, PMID 34873207.

Paula A, Rodrigues N, Coelho Silva J, Paula A, Rodrigues N. Paclitaxel induces stathmin 1 phosphorylation, microtubule stability and apoptosis in acute lymphoblastic leukemia cells. Heliyon. 2017;1–12:e00405.

Wang S, Konorev EA, Kotamraju S, Joseph J, Kalivendi S, Kalyanaraman B. Doxorubicin induces apoptosis in normal and tumor cells via distinctly different mechanisms intermediacy of H(2)O(2)- and p53-dependent pathways. J Biol Chem. 2004;279(24):25535-43. doi: 10.1074/jbc.M400944200, PMID 15054096.

Tanida S, Mizoshita T, Ozeki K, Tsukamoto H, Kamiya T, Kataoka H. Mechanisms of cisplatin-induced apoptosis and of cisplatin sensitivity: potential of BIN1 to act as a potent predictor of cisplatin sensitivity in gastric cancer treatment. Int J Surg Oncol. 2012;2012:862879. doi: 10.1155/2012/862879, PMID 22778941.

Pecorino L. Molecular biology of cancer: mechanism, target and therapeutics. 4th ed. Oxford: Oxford University Press; 2020.

Singh V, Khurana A, Navik U, Allawadhi P, Bharani KK, Weiskirchen R. Apoptosis and pharmacological therapies for targeting thereof for cancer therapeutics. Sci. 2022;4(2):1-25. doi: 10.3390/sci4020015.

Golstein P, Kroemer G. Cell death by necrosis: towards a molecular definition. Trends Biochem Sci. 2007;32(1):37-43. doi: 10.1016/j.tibs.2006.11.001, PMID 17141506.

Witherup KM, Look SA, Stasko MW, Ghiorzi TJ, Muschik GM, Cragg GM. Taxus spp. needles contain amounts of taxol comparable to the bark of taxus brevifolia: analysis and isolation. J Nat Prod. 1990;53(5):1249-55. doi: 10.1021/np50071a017, PMID 1981374.

Vidensek N, Lim P, Campbell A, Carlson C. Taxol content in bark, wood, root, leaf, twig, and seedling from several Taxus species. J Nat Prod. 1990;53(6):1609-10. doi: 10.1021/np50072a039, PMID 1982448.

Menteri Lingkungan Hidup dan Kehutanan Republik Indonesia. Peraturan Menteri Lingkungan Hidup Kehutanan Republ Indones; 2018. p. 106.

US FDA. Summary of product characteristic: paclitaxel injection USP; 2020. p. 1-4.

Chen J. The cell-cycle arrest and apoptotic and progression. In: Lozano G, Levine AJ, editors. Perspective in medicine. Cold Spring Harbor Laboratory Press; 2024. p. 1-15.

Tan G, Heqing L, Jiangbo C, Ming J, Yanhong M, Xianghe L. Apoptosis induced by low-dose paclitaxel is associated with p53 upregulation in nasopharyngeal carcinoma cells. Int J Cancer. 2002;97(2):168-72. doi: 10.1002/ijc.1591, PMID 11774260.

Vikhanskaya F, Vignati S, Beccaglia P, Ottoboni C, Russo P, D’Incalci MD. Inactivation of p53 in a human ovarian cancer cell line increases the sensitivity to paclitaxel by inducing G2/M arrest and apoptosis. Exp Cell Res. 1998;241(1):96-101. doi: 10.1006/excr.1998.4018, PMID 9633517.

Lan YY, Cheng TC, Lee YP, Wang CY, Huang BM. Paclitaxel induces human KOSC3 oral cancer cell apoptosis through caspase pathways. Biocell. 2024;48(7):1047-54. doi: 10.32604/biocell.2024.050701.

Guntur VP, Waldrep JC, Guo JJ, Selting KI, Dhand R. Increasing p53 protein sensitizes non-small cell lung cancer to paclitaxel and cisplatin in vitro. Anticancer Res. 2010;30(9):3557-64. PMID 20944137.

Kour R, Sharma N, Singh M, Kumar S, kaur S. Cassia fistula L. bark fraction modulated GSK3β/ p53 expression for mitochondrial mediated apoptosis in HeLa cells. S Afr J Bot. 2024;168:46-60. doi: 10.1016/j.sajb.2024.03.018.

Li J, Shang L, Zhou F, Wang S, Liu N, Zhou M. Herba patriniae and its component isovitexin show anti-colorectal cancer effects by inducing apoptosis and cell-cycle arrest via p53 activation. Biomed Pharmacother. 2023;168:115690. doi: 10.1016/j.biopha.2023.115690, PMID 37939611.

Bullenkamp J, Tavassoli M. Cancer and cell death. In: Cancer biology. Oxford University Press; 2019. p. 196-208.

Giannakakou P, Robey R, Fojo T, Blagosklonny MV. Low concentrations of paclitaxel induce cell type-dependent p53, p21 and G1/G2 arrest instead of mitotic arrest: molecular determinants of paclitaxel-induced cytotoxicity. Oncogene. 2001;20(29):3806-13. doi: 10.1038/sj.onc.1204487, PMID 11439344.

Qian S, Wei Z, Yang W, Huang J, Yang Y, Wang J. The role of BCL-2 family proteins in regulating apoptosis and cancer therapy. Front Oncol. 2022;12:1-16. doi: 10.3389/fonc.2022.985363.

Naseri MH, Mahdavi M, Davoodi J, Tackallou SH, Goudarzvand M, Neishabouri SH. Upregulation of Bax and downregulation of Bcl2 during 3-NC mediated apoptosis in human cancer cells. Cancer Cell Int. 2015;15:55. doi: 10.1186/s12935-015-0204-2, PMID 26074734.

Gur C, Kandemir FM, Caglayan C, Satıcı E. Chemopreventive effects of hesperidin against paclitaxel-induced hepatotoxicity and nephrotoxicity via amendment of Nrf2/HO-1 and caspase-3/Bax/Bcl-2 signaling pathways. Chem Biol Interact. 2022;365:110073. doi: 10.1016/j.cbi.2022.110073, PMID 35921949.

Miller AV, Hicks MA, Nakajima W, Richardson AC, Windle JJ, Harada H. Paclitaxel-induced apoptosis is BAK-dependent, but BAX and BIM-independent in breast tumor. PLOS One. 2013;8(4):e60685. doi: 10.1371/journal.pone.0060685, PMID 23577147.

Sharifi S, Barar J, Hejazi MS, Samadi N. Doxorubicin changes bax/Bcl-xL ratio, caspase-8 and 9 in breast cancer cells. Adv Pharm Bull. 2015;5(3):351-9. doi: 10.15171/apb.2015.049, PMID 26504757.

Han JY, Chung YJ, Park SW, Kim JS, Rhyu MG, Kim HK. The relationship between cisplatin-induced apoptosis and p53, Bcl-2 and Bax expression in human lung cancer cells. Korean J Intern Med. 1999;14(1):42-52. doi: 10.3904/kjim.1999.14.1.42, PMID 10063313.

Castaneda AM, Melendez CM, Uribe D, Pedroza Diaz J. Synergistic effects of natural compounds and conventional chemotherapeutic agents: recent insights for the development of cancer treatment strategies. Heliyon. 2022;8(6):e09519. doi: 10.1016/j.heliyon.2022.e09519, PMID 35669542.

Bonham Corcoran M, Armstrong A, O’Briain A, Cassidy A, Turner N. The benefits of nature-based therapy for the individual and the environment: an integrative review. Ir J Occup Ther. 2022;50(1):16-27. doi: 10.1108/IJOT-06-2021-0015.

Vignesh A, Amal TC, Sivalingam R, Selvakumar S, Vasanth K. Influence of ecological factors on the phytochemical composition and bioactivity of Berberis tinctoria Lesch. wild edible fruits. Biochem Syst Ecol. 2024;112:104771. doi: 10.1016/j.bse.2023.104771.

Sabindo NH, Yatim RM, Kannan Thirumulu P. Phytochemical composition of Clinacanthus nutans based on factors of environment, genetics and postharvest processes: a review. Biomedicine. 2024;14(2):1-11. doi: 10.37796/2211-8039.1451, PMID 38939094.

Matos P, Paranhos A, Oliveiros B, Cruz MT, Batista MT, Figueirinha A. Biological and phytochemical variation with pre- and post-harvest conditions for the Acanthus mollis L. leaf. Ind Crops Prod. 2024;211:(118221). doi: 10.1016/j.indcrop.2024.118221.

Published

24-02-2025

How to Cite

PUTRI, D. E., ALMAHDY, A., PUTRA, Y. U., HAMIDI, D., & WAHYUNI, F. S. (2025). INVESTIGATION OF THE APOPTOSIS MECHANISM INDUCED BY TAXUS SUMATRANA EXTRACT LEAF IN CERVICAL CANCER CELLS. International Journal of Applied Pharmaceutics, 17(1), 27–36. https://doi.org/10.22159/ijap.2025.v17s1.05

Issue

Section

Original Article(s)

Similar Articles

<< < 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.