COMPUTATIONAL STUDY OF COMPOUNDS IN MANGOSTEEN (GARCINIA MANGOSTANA L.) AS A CANDIDATE OF LUNG CANCER THERAPY

Authors

  • DIRA HEFNI Department of Biology Pharmacy, Faculty of Pharmacy, Universitas Andalas, Padang-25163, Indonesia
  • ZAKKY ANANDA Department of Biology Pharmacy, Faculty of Pharmacy, Universitas Andalas, Padang-25163, Indonesia https://orcid.org/0009-0003-5371-017X
  • PURNAWAN PONTANA PUTRA Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Andalas, Padang-25163, Indonesia https://orcid.org/0000-0001-9466-4569

DOI:

https://doi.org/10.22159/ijap.2025.v17s1.08

Keywords:

Lung cancer, Garcinia mangostana L., Network pharmacology, Protein-protein interaction, Deep learning docking, Molecular dynamics simulations

Abstract

Objective: Cancer involves uncontrolled cell growth and spreading to other body parts. Lung cancer is the most common and deadliest cancer worldwide, with treatments often causing significant side effects. This research aims to predict the potential of compounds in mangosteen (Garcinia mangostana L.) as a candidate for lung cancer therapy.

Methods: The methods used in this research are network pharmacology analysis using string and cytoscape, molecular docking using deep learning, and molecular dynamics simulations.

Results: Eleven compounds have been identified in Garcinia mangostana L., including catechin, gartanin, alpha-mangostin, norathyriol, maclurin, 8-deoxygartanin, beta-mangostin, gamma-mangostin, garcinone A, garcinone B, and garcinone D. Based on ADMET analysis, these compounds exhibit varying degrees of absorption, distribution, metabolism, excretion, and toxicity profiles, which can provide valuable insights into their potential therapeutic applications and safety profiles. It has significant protein targets identified are AURKA, PLK1, CCNA2, and KIF11, with AURKA chosen for molecular docking and molecular dynamics simulations. Molecular docking revealed garcinone D has a binding energy -10.30 kcal/mol and gamma-Mangostin -10.28 kcal/mol had better affinity than the native ligand adenosine-5'-diphosphate -9.00 kcal/mol. Molecular dynamics simulations indicated that garcinone D and gamma-Mangostin were less stable than the native ligand over a 100 ns simulation.

Conclusion: The compounds, including gamma-Mangostin and garcinone D, target the lung cancer-related protein AURKA and are demonstrate to affect key biological pathways such as the cell cycle and motor proteins. Deep learning docking shows that garcinone D and gamma-mangostin exhibit high affinity, while molecular dynamics simulations confirm their stability over 100 ns.

References

Singer S. Psychosocial impact of cancer. Recent Results Cancer Res. 2018;210:1-11. doi: 10.1007/978-3-319-64310-6_1, PMID 28924676.

DiPiro JT, Yee GC, Posey LM, Haines ST, Nolin TD, Ellingrod VL. Pharmacotherapy: a pathophysiologic approach. McGraw-Hill Education; 2020.

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209-49. doi: 10.3322/caac.21660, PMID 33538338.

Zhang Q, Liu J, Li R, Zhao R, Zhang M, Wei S. A network pharmacology approach to investigate the anticancer mechanism and potential active ingredients of Rheum palmatum L. against lung cancer via induction of apoptosis. Front Pharmacol. 2020;11:528308. doi: 10.3389/fphar.2020.528308, PMID 33250766.

EL-Kenawy AE, Hassan SM, Osman HE. Mangosteen (Garcinia mangostana L.) nonvitamin and nonmineral nutritional supplements. Amsterdam: Elsevier; 2019. p. 313-9. doi: 10.1016/B978-0-12-812491-8.00045-X.

Andayani R, Armin F, Mardhiyah A. Determination of the total phenolics and antioxidant activity in the rind extracts of Garcinia mangostana L., Garcinia Cowa Roxb., and garcinia atroviridis griff. Ex T. Anders. Asian J Pharm Clin Res. 2020;13(8):149-52. doi: 10.22159/ajpcr.2020.v13i8.36525.

Ovalle Magallanes B, Eugenio Perez D, Pedraza Chaverri J. Medicinal properties of mangosteen (Garcinia mangostana L.): a comprehensive update. Food Chem Toxicol. 2017;109(1):102-22. doi: 10.1016/j.fct.2017.08.021, PMID 28842267.

Nauman MC, Johnson JJ. The purple mangosteen (Garcinia mangostana): defining the anticancer potential of selected xanthones. Pharmacol Res. 2022;175:106032. doi: 10.1016/j.phrs.2021.106032, PMID 34896543.

Gul S, Aslam K, Pirzada Q, Rauf A, Khalil AA, Semwal P. Xanthones: a class of heterocyclic compounds with anticancer potential. Curr Top Med Chem. 2022;22(23):1930-49. doi: 10.2174/1568026622666220901145002, PMID 36056870.

Kalick LS, Khan HA, Maung E, Baez Y, Atkinson AN, Wallace CE. Mangosteen for malignancy prevention and intervention: current evidence, molecular mechanisms, and future perspectives. Pharmacol Res. 2023;188:106630. doi: 10.1016/j.phrs.2022.106630, PMID 36581166.

Zhang R, Zhu X, Bai H, Ning K. Network pharmacology databases for traditional Chinese medicine: review and assessment. Front Pharmacol. 2019;10:123. doi: 10.3389/fphar.2019.00123, PMID 30846939.

Patil SA, Patil VS, Malgi AP, Hupparage VB, Mallapur SP, Naik RR. Cananga odorata (Ylang-Ylang) modulate pathways involved in cancer: gene set enrichment and network pharmacology approach. Int J Ayurvedic Med. 2023;14(2):453-63. doi: 10.47552/ijam.v14i2.3434.

Afendi FM, Okada T, Yamazaki M, Hirai Morita A, Nakamura Y, Nakamura K. KNApSAcK family databases: integrated metabolite-plant species databases for multifaceted plant research. Plant Cell Physiol. 2012;53(2):e1. doi: 10.1093/pcp/pcr165, PMID 22123792.

US Department of Agriculture ARS. Dr. Duke’s phytochemical and ethnobotanical databases; 2016.

Daina A, Michielin O, Zoete V. Swiss ADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7:42717. doi: 10.1038/srep42717, PMID 28256516.

Benet LZ, Hosey CM, Ursu O, Oprea TI. BDDCS, the rule of 5 and drug ability. Adv Drug Deliv Rev. 2016;101:89-98. doi: 10.1016/j.addr.2016.05.007, PMID 27182629.

Wang X, Shen Y, Wang S, Li S, Zhang W, Liu X. Pharm mapper 2017 update: a web server for potential drug target identification with a comprehensive target pharmacophore database. Nucleic Acids Res. 2017;45(W1):W356-60. doi: 10.1093/nar/gkx374, PMID 28472422.

Daina A, Michielin O, Zoete V. Swiss target prediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019;47(W1):W357-64. doi: 10.1093/nar/gkz382, PMID 31106366.

Liu Z, Guo F, Wang Y, Li C, Zhang X, Li H. BATMAN-TCM: a bioinformatics analysis tool for molecular mech ANism of traditional chinese medicine. Batman. Sci Rep. 2016;6(1). doi: 10.1038/srep21146.

Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021;49(D1):D605-12. doi: 10.1093/nar/gkaa1074, PMID 33237311.

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498-504. doi: 10.1101/gr.1239303, PMID 14597658.

Jiao X, Sherman BT, Huang DW, Stephens R, Baseler MW, Lane HC. David-WS: a stateful web service to facilitate gene/protein list analysis. Bioinformatics. 2012;28(13):1805-6. doi: 10.1093/bioinformatics/bts251, PMID 22543366.

Reimand J, Isserlin R, Voisin V, Kucera M, Tannus Lopes C, Rostamianfar A. Pathway enrichment analysis and visualization of omics data using g: profiler, GSEA, cytoscape and enrichment map. Nat Protoc. 2019;14(2):482-517. doi: 10.1038/s41596-018-0103-9, PMID 30664679.

Tang D, Chen M, Huang X, Zhang G, Zeng L, Zhang G. SRplot: a free online platform for data visualization and graphing. PLOS One. 2023;18(11):e0294236. doi: 10.1371/journal.pone.0294236, PMID 37943830.

McNutt AT, Francoeur P, Aggarwal R, Masuda T, Meli R, Ragoza M. GNINA 1.0: molecular docking with deep learning. J Cheminform. 2021;13(1):43. doi: 10.1186/s13321-021-00522-2, PMID 34108002.

Putra PP, Indradi RB, Yuniarta TA, Hanifa D, Syaban MF, Suharti N. Computational investigation of pluchea indica mechanism targeting peroxisome proliferator-activated receptor gamma. J HerbMed Pharmacol. 2024;13(4):630-9. doi: 10.34172/jhp.2024.52544.

Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform. 2012;4(1):17. doi: 10.1186/1758-2946-4-17, PMID 22889332.

McIntyre PJ, Collins PM, Vrzal L, Birchall K, Arnold LH, Mpamhanga C. Characterization of three druggable hot-spots in the Aurora-A/TPX2 interaction using biochemical, biophysical, and fragment-based approaches. ACS Chem Biol. 2017;12(11):2906-14. doi: 10.1021/acschembio.7b00537, PMID 29045126.

Huang J, Rauscher S, Nawrocki G, Ran T, Feig M, De Groot BL. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat Methods. 2017;14(1):71-3. doi: 10.1038/nmeth.4067, PMID 27819658.

Sousa da Silva AW, Vranken WF. Acpype-Ante chamber python parser interface. BMC Res Notes. 2012;5:367. doi: 10.1186/1756-0500-5-367, PMID 22824207.

Hussain S, Iqbal A, Hamid S, Putra PP, Ashraf M. Identifying alkaline phosphatase inhibitory potential of cyclooxygenase-2 inhibitors: insights from molecular docking, MD simulations, molecular expression analysis in MCF-7 breast cancer cell line and in vitro investigations. Int J Biol Macromol. 2024;277(2):132721. doi: 10.1016/j.ijbiomac.2024.132721, PMID 38815949.

Kurniawan R, Taslim NA, Hardinsyah H, Syauki AY, Idris I, Aman AM. Pharmacoinformatics and cellular studies of algal peptides as functional molecules to modulate type-2 diabetes markers. Future Foods. 2024;9. doi: 10.1016/j.fufo.2024.100354.

Velez LA, Delgado Y, Ferrer Acosta Y, Suarez Arroyo IJ, Rodriguez P, Perez D. Theoretical prediction of gastrointestinal absorption of phytochemicals. Int J Plant Biol. 2022;13(2):163-79. doi: 10.3390/ijpb13020016.

Nepusz T, Yu H, Paccanaro A. Detecting overlapping protein complexes in protein-protein interaction networks. Nat Methods. 2012;9(5):471-2. doi: 10.1038/nmeth.1938, PMID 22426491.

Niemira M, Collin F, Szalkowska A, Bielska A, Chwialkowska K, Reszec J. Molecular signature of subtypes of non-small-cell lung cancer by large-scale transcriptional profiling: identification of key modules and genes by weighted gene co-expression network analysis (WGCNA). Cancers (Basel). 2019;12(1):37. doi: 10.3390/cancers12010037, PMID 31877723.

Mou PK, Yang EJ, Shi C, Ren G, Tao S, Shim JS. Aurora kinase a, a synthetic lethal target for precision cancer medicine. Exp Mol Med. 2021;53(5):835-47. doi: 10.1038/s12276-021-00635-6, PMID 34050264.

Dos Santos EO, Carneiro-Lobo TC, Aoki MN, Levantini E, Basseres DS. Aurora kinase targeting in lung cancer reduces KRAS-induced transformation. Mol Cancer. 2016;15:12. doi: 10.1186/s12943-016-0494-6, PMID 26842935.

Galetta D, Cortes Dericks L. Promising therapy in lung cancer: spotlight on Aurora kinases. Cancers (Basel). 2020;12(11):3371. doi: 10.3390/cancers12113371, PMID 33202573.

Shah KN, Bhatt R, Rotow J, Rohrberg J, Olivas V, Wang VE. Aurora kinase a drives the evolution of resistance to third-generation EGFR inhibitors in lung cancer. Nat Med. 2019;25(1):111-8. doi: 10.1038/s41591-018-0264-7, PMID 30478424.

Kurian T. In silico screening by molecular docking of heterocyclic compounds with furan or indole nucleus from database for anticancer activity and validation of the method by redocking. Int J Pharm Pharm Sci. 2024;16:42-5. doi: 10.22159/ijpps.2024v16i4.50478.

De Vivo M, Masetti M, Bottegoni G, Cavalli A. Role of molecular dynamics and related methods in drug discovery. J Med Chem. 2016;59(9):4035-61. doi: 10.1021/acs.jmedchem.5b01684, PMID 26807648.

Santos LH, Ferreira RS, Caffarena ER. Integrating molecular docking and molecular dynamics simulations. Methods Mol Biol. 2019;2053:13-34. doi: 10.1007/978-1-4939-9752-7_2, PMID 31452096.

Gerrard JA, Domigan LJ. Protein nanotechnology: protocols, instrumentation, and applications. 3rd ed. Humana Press; 2020.

Ghahremanian S, Rashidi MM, Raeisi K, Toghraie D. Molecular dynamics simulation approach for discovering potential inhibitors against SARS-CoV-2: a structural review. J Mol Liq. 2022;354:118901. doi: 10.1016/j.molliq.2022.118901, PMID 35309259.

Putra PP, Asnawi A, Hamdayuni F, Arfan ALO, Aman LO. Pharmacoinformatics analysis of Morus macroura for drug discovery and development. Int J Appl Pharm. 2024;16:111-7. doi: 10.22159/ijap.2024.v16s1.26.

Tripathi N, Goel B, Bhardwaj N, Sahu B, Kumar H, Jain SK. Virtual screening and molecular simulation study of natural products database for lead identification of novel coronavirus main protease inhibitors. J Biomol Struct Dyn. 2022;40(8):3655-67. doi: 10.1080/07391102.2020.1848630, PMID 33213294.

Noor F, Asif M, Ashfaq UA, Qasim M, Tahir Ul Qamar M. Machine learning for synergistic network pharmacology: a comprehensive overview. Brief Bioinform. 2023;24(3):bbad120. doi: 10.1093/bib/bbad120, PMID 37031957.

Published

24-02-2025

How to Cite

HEFNI, D., ANANDA, Z., & PUTRA, P. P. (2025). COMPUTATIONAL STUDY OF COMPOUNDS IN MANGOSTEEN (GARCINIA MANGOSTANA L.) AS A CANDIDATE OF LUNG CANCER THERAPY. International Journal of Applied Pharmaceutics, 17(1), 51–60. https://doi.org/10.22159/ijap.2025.v17s1.08

Issue

Section

Original Article(s)

Similar Articles

<< < 109 110 111 

You may also start an advanced similarity search for this article.