pH-RESPONSIVE EUDRAGIT® S-100 COATED CHITOSAN NANOPARTICLES FOR TARGETED CURCUMIN DELIVERY IN ULCERATIVE COLITIS: FORMULATION AND OPTIMIZATION

Authors

  • NEELESH KUMAR SAHU Faculty of Pharmaceutical Sciences, RKDF University, Gandhi Nagar, Bhopal, MP, India https://orcid.org/0009-0008-6840-3515
  • NARENDRA KUMAR LARIYA Faculty of Pharmaceutical Sciences, RKDF University, Gandhi Nagar, Bhopal, MP, India

DOI:

https://doi.org/10.22159/ijap.2025v17i3.54408

Keywords:

Chitosan nanoparticles, Eudragit S-100, Curcumin, Ulcerative colitis, pH-responsive delivery, Ionotropic gelation

Abstract

Objective: This study aimed to develop and optimize pH-responsive Eudragit S-100 coated chitosan Nanoparticles (NPs) for targeted curcumin delivery in Ulcerative Colitis (UC). The objectives included enhancing curcumin's bioavailability, achieving colon-specific release through mucoadhesive, pH-sensitive nanocarriers, and evaluating their long-term stability.

Methods: Curcumin-loaded chitosan NPs were prepared via ionotropic gelation using Sodium Tripolyphosphate (STPP) and coated with Eudragit S-100 via solvent evaporation. Nine formulations (F1–F9) were optimized by varying chitosan (250–750 mg) and STPP (0.50–1.00% w/v) concentrations. The NPs were characterized for particle size, zeta potential, Entrapment Efficiency (EE), morphology (SEM), and in vitro drug release in simulated gastrointestinal pH (1.2 → 7.5). Release kinetics were analyzed using Zero-Order, Higuchi, and Korsmeyer-Peppas models. Stability studies were conducted at 4 °C, 28 °C/65% RH, and 40 °C/75% RH for 90 days to assess particle size and drug retention.

Results: The optimized formulation (F4: 500 mg chitosan, 0.50% w/v STPP) exhibited a mean particle size of 355.5 nm, high EE (76.65%), and a zeta potential of −36.32 mV, confirming colloidal stability. Coated NPs demonstrated pH-dependent release: minimal in acidic pH (2.32% at pH 1.2) and sustained in colonic pH (98.33% at pH 7.5). Release kinetics followed the Korsmeyer-Peppas model (R² = 0.9892, n = 0.62), indicating anomalous transport. Stability studies revealed excellent retention of particle size (≤361.4 nm) and drug content (>99%) under varied storage conditions, confirming long-term stability.

Conclusion: Eudragit S-100 coated chitosan NPs successfully addressed curcumin's solubility and bioavailability challenges while ensuring pH-responsive, targeted colonic delivery. The optimized formulation (F4) exhibited robust stability, making it a promising candidate for UC therapy. Future studies should focus on in vivo efficacy and clinical translation.

References

1. Lavelle A, Sokol H. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nat Rev Gastroenterol Hepatol. 2020;17(4):223-37. doi: 10.1038/s41575-019-0258-z, PMID 32076145.

2. Ng SC, Shi HY, Hamidi N, Underwood FE, Tang W, Benchimol EI. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet. 2017;390(10114):2769-78. doi: 10.1016/S0140-6736(17)32448-0.

3. Feuerstein JD, Isaacs KL, Schneider Y, Siddique SM, Falck Ytter Y, Singh S. AGA clinical practice guidelines on the management of moderate to severe ulcerative colitis. Gastroenterology. 2020;158(5):1450-61. doi: 10.1053/j.gastro.2020.01.006, PMID 31945371.

4. Gupta SC, Prasad S, Aggarwal BB. Curcumin as a therapeutic agent for targeting inflammation in ulcerative colitis: preclinical and clinical advances. Biomater Sci. 2021;9(3):684-702. doi: 10.1039/D0BM01645A.

5. Nelson KM, Dahlin JL, Bisson J, Graham J, Pauli GF, Walters MA. The essential medicinal chemistry of curcumin. J Med Chem. 2017;60(5):1620-37. doi: 10.1021/acs.jmedchem.6b00975, PMID 28074653.

6. Abbas H, Sayed NS, Youssef NA, ME Gaafar P, Mousa MR, Fayez AM. Novel luteolin-loaded chitosan decorated nanoparticles for brain-targeting delivery in a sporadic alzheimer’s disease mouse model: focus on antioxidant, anti-inflammatory, and amyloidogenic pathways. Pharmaceutics. 2022;14(5):1003. doi: 10.3390/pharmaceutics14051003, PMID 35631589.

7. Zafar R, Zia KM, Tabasum S, Jabeen F, Noreen A, Zuber M. Polysaccharide based bionanocomposites, properties and applications: a review. Int J Biol Macromol. 2016;92:1012-24. doi: 10.1016/j.ijbiomac.2016.07.102, PMID 27481340.

8. Bernkop Schnürch A. Chitosan and its derivatives: potential excipients for peroral peptide delivery systems. Int J Pharm. 2000;194(1):1-13. doi: 10.1016/s0378-5173(99)00365-8, PMID 10601680.

9. Kshirsagar SJ. Eudragit S100-coated chitosan nanoparticles for colon-targeted delivery of resveratrol: formulation optimization and in vitro evaluation. J Drug Deliv Sci Technol. 2019;54:101266.

10. Laroui H. Functionalized chitosan nanoparticles for oral drug delivery in inflammatory bowel disease. Biomaterials. 2011;32(34):8702-12.

11. Sinha VR, Kumria R. Polysaccharides in colon-specific drug delivery. Int J Pharm. 2001;224(1-2):19-38. doi: 10.1016/s0378-5173(01)00720-7, PMID 11472812.

12. Ibekwe VC, Fadda HM, Parsons GE, Basit AW. A comparative in vitro assessment of the drug release performance of pH-responsive polymers for ileo-colonic delivery. Int J Pharm. 2006;308(1-2):52-60. doi: 10.1016/j.ijpharm.2005.10.038, PMID 16356670.

13. Tønnesen HH, Másson M, Loftsson T. Studies of curcumin and curcuminoids. XXVII. Cyclodextrin complexation: solubility, chemical and photochemical stability. Int J Pharm. 2002;244(1-2):127-35. doi: 10.1016/S0378-5173(02)00323-X, PMID 12204572.

14. Saeedi M, Morteza Semnani K, Ansoroudi F, Fallah S, Amin G. Evaluation of binding properties of plantago psyllium seed mucilage. Acta Pharm. 2010;60(3):339-48. doi: 10.2478/v10007-010-0028-5, PMID 21134867.

15. Patel RJ, Parikh RH. Intranasal delivery of topiramate nanoemulsion: Pharmacodynamic, pharmacokinetic and brain uptake studies. Int J Pharm. 2020;585:119486. doi: 10.1016/j.ijpharm.2020.119486, PMID 32502686.

16. Khan MU, Khan S, Alshahrani SM, Irfan M. Eudragit S-100-coated chitosan-curcumin nanoparticles for ulcerative colitis: enhanced stability and targeted delivery. Int J Biol Macromol. 2022;220:1451-64. doi: https://doi.org/10.1016/j.ijbiomac.2022.09.138.

17. Zhang X, Liu M, Yang B, Zhang X, Wei Y. Tetraphenylethene-based aggregation-induced emission fluorescent organic nanoparticles: facile preparation and cell imaging application. Colloids Surf B Biointerfaces. 2013;112:81-6. doi: 10.1016/j.colsurfb.2013.07.052, PMID 23973907.

18. Anoush M, Mohammad Khani MR. Evaluating the anti-nociceptive and anti-inflammatory effects of ketotifen and fexofenadine in rats. Adv Pharm Bull. 2015;5(2):217-22. doi: 10.15171/apb.2015.030, PMID 26236660.

19. Van Riet Nales DA, Kozarewicz P, Aylward B, de Vries R, Egberts TC, Rademaker CM. Paediatric drug development and formulation design-a european perspective. AAPS PharmSciTech. 2017;18(2):241-9. doi: 10.1208/s12249-016-0558-3, PMID 27270905.

20. Patel R. Drug Dev Ind Pharm. 2019;45(2):187-96.

21. Zbinden A, Browne S, Altiok EI, Svedlund FL, Jackson WM, Healy KE. Multivalent conjugates of basic fibroblast growth factor enhance in vitro proliferation and migration of endothelial cells. Biomater Sci. 2018;6(5):1076-83. doi: 10.1039/c7bm01052d, PMID 29595848.

22. Jones D. J Control Release. 2019;311:43-53.

23. Espinosa Cano E, Aguilar MR, Portilla Y, Barber DF, San Roman J. Anti-inflammatory polymeric nanoparticles based on ketoprofen and dexamethasone. Pharmaceutics. 2020;12(8):723. doi: 10.3390/pharmaceutics12080723, PMID 32751993.

24. Younis MA, Tawfeek HM, Abdellatif AA, Abdel-Aleem JA, Harashima H. Clinical translation of nanomedicines: challenges, opportunities, and keys. Adv Drug Deliv Rev. 2022;181:114083. doi: 10.1016/j.addr.2021.114083, PMID 34929251.

25. Singh A, Dutta PK, Kumar H, Kureel AK, Rai AK. Synthesis of chitin-glucan-aldehyde-quercetin conjugate and evaluation of anticancer and antioxidant activities. Carbohydr Polym. 2018;193:99-107. doi: 10.1016/j.carbpol.2018.03.092, PMID 29773403.

26. Rahman M. J Drug Deliv Sci Technol. 2021;61:102274.

27. Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: problems and promises. Mol Pharm. 2007;4(6):807-18. doi: 10.1021/mp700113r, PMID 17999464.

Published

07-05-2025

How to Cite

SAHU, N. K., & LARIYA, N. K. (2025). pH-RESPONSIVE EUDRAGIT® S-100 COATED CHITOSAN NANOPARTICLES FOR TARGETED CURCUMIN DELIVERY IN ULCERATIVE COLITIS: FORMULATION AND OPTIMIZATION. International Journal of Applied Pharmaceutics, 17(3), 252–259. https://doi.org/10.22159/ijap.2025v17i3.54408

Issue

Section

Original Article(s)

Similar Articles

<< < 95 96 97 

You may also start an advanced similarity search for this article.