PREPARATION AND OPTIMIZATION OF GEPIRONE HCL SR MATRIX TABLETS USING HPMC K100M AND POLYOX WSR N80

Authors

DOI:

https://doi.org/10.22159/ijap.2025v17i6.54651

Keywords:

Swelling, Erosion, Central composite design, Once-daily formulation

Abstract

Objective: In adults, Gepirone Hydrochloride (HCl) is most commonly employed as a first-line treatment for Major Depressive Disorder (MDD). The elimination half-life of Gepirone HCl is approximately 5 h necessitates the development of sustained release formulation. In the current research, two polymers HPMC K100M and Polyox WSR N80 were used in combination by adopting a central composite design with an objective to minimize burst release and sustain drug release for 24 h.

Methods: The SR matrix tablets of Gepirone HCl were prepared by wet granulation method. Optimization of Gepirone HCl SR matrix tablets was achieved through central composite design (CCD). The selected CQAs were concentration of polymer HPMC K100M in the range of 20 to 40 mg per tablet and concentration of Polyox WSR N80 in the range of 30 to 50 mg per tablet. Three responses selected for optimization vis-à-vis Q 1 (Cumulative percent drug release from SR matrix tablet in 1 h), t 50 (time taken for release of 50% of API) and Q 18 (Cumulative percent drug release from SR matrix tablet at 18 h).

Results: Fourier Transform Infra Red (FT-IR) and Differential Scanning Calorimetry (DSC) study for the physical mixture of Gepirone HCl with HPMC K100M and Polyox WSR N80 in 1:1 ratio demonstrated compatibility. The granules exhibited improved flowability and compressibility. The optimized formulation (run 7) passed all the quality control tests for tablets. Scanning electron microscopy for tablet of run 7 exhibited a homogenous and porous gel network. In vitro dissolution study showed that the integration of two polymers HPMC K100M and Polyox WSR N80 were effective in minimizing the initial burst release, and sustained release of Gepirone HCl over 24 h.

Conclusion: Hence, the development of a once-daily formulation aligns with modern patient-centric approaches in pharmaceutical design, catering to convenience and improving quality of life for patients requiring long-term therapy.

References

1. Kaur Gill A, Bansal Y, Bhandari R, Kaur S, Kaur J, Singh R. Gepirone hydrochloride: a novel antidepressant with 5-HT1A agonistic properties. Drugs Today (Barc). 2019;55(7):423-37. doi: 10.1358/dot.2019.55.7.2958474, PMID 31347611.

2. Holmberg M, From Fabre Kramer E. Pharmaceuticals. Pharmacy Times. 2024;90(1):36-7.

3. Timmer CJ, Sitsen JM. Single and multiple dose pharmacokinetics and tolerability of gepirone extended release. Clin Drug Investig. 2002;22(12):819-26. doi: 10.2165/00044011-200222120-00002.

4. Fabre LF, Timmer CJ. Effects of food on the bioavailability of gepirone from extended release tablets in humans: results of two open-label crossover studies. Curr Ther Res Clin Exp. 2003;64(8):580-98. doi: 10.1016/j.curtheres.2003.09.012, PMID 24944406.

5. Robinson DS, Sitsen JM, Gibertini M. A review of the efficacy and tolerability of immediate release and extended release formulations of gepirone. Clin Ther. 2003;25(6):1618-33. doi: 10.1016/s0149-2918(03)80159-5, PMID 12860488.

6. Teixeira MT, Sa Barreto LL, Taveira SF, Gratieri T, Gelfuso GM, Marreto RN. The influence of matrix technology on the subdivision of sustained-release matrix tablets. AAPS PharmSciTech. 2019;21(1):8. doi: 10.1208/s12249-019-1554-1, PMID 31797144.

7. Sarangi DK, Patro CS, Patra CN, Sahoo NK, Das NR, Kaur K. In vivo assessment, formulation characterization and enhancing pharmacotherapy of encapsulated mini tablets for immediate release sildenafil citrate and sustained release bosentan. Results Chem. 2024;9:101652. doi: 10.1016/j.rechem.2024.101652.

8. Patra CN, Kumar AB, Pandit HK, Singh SP, Devi MV. Design and evaluation of sustained-release bilayer tablets of propranolol hydrochloride. Acta Pharm. 2007;57(4):479-89. doi: 10.2478/v10007-007-0038-0, PMID 18165191.

9. Diwedi R, Alexandar A, Chandrasekar M. Preparation and in vitro evaluation of sustained release tablet formulations of metformin HCl. Asian J Pharm Clin Res. 2012;5(1):45-8.

10. Ram D, Pankhaniya H. Formulation evaluation and optimization of sustained-release drug delivery system of cisapride tablet. Int J Pharm Pharm Sci. 2021;13(9):56-62. doi: 10.22159/ijpps.2021v13i9.41799.

11. Patra CN, Padhy S, Sen T, Bhattacharya S, Swain S, Sruti J. Formulation development and evaluation of SR matrix tablets of stavudine. Ind J Pharm Educ Res. 2013;47(2):214-20.

12. Vanza JD, Patel RB, Dave RR, Patel MR. Polyethylene oxide and its controlled release properties in hydrophilic matrix tablets for oral administration. Pharm Dev Technol. 2020;25(10):1169-87. doi: 10.1080/10837450.2020.1808015, PMID 32772604.

13. Martin LM, Rajabi Siahboomi AR. Applications of polyethylene oxide (POLYOX) in hydrophilic matrices. Hydrophilic Matrix Tablets for Oral Controlled Release. 2014 Sep 23;16:123-41. doi: 10.1007/978-1-4939-1519-4_5.

14. Gharti K, Thapa P, Budhathoki U, Bhargava A. Formulation and in vitro evaluation of floating tablets of hydroxypropyl methylcellulose and polyethylene oxide using ranitidine hydrochloride as a model drug. J Young Pharm. 2012;4(4):201-8. doi: 10.4103/0975-1483.104363, PMID 23493037.

15. He W, Huang S, Zhou C, Cao L, Yao J, Zhou J. Bilayer matrix tablets for prolonged actions of metformin hydrochloride and repaglinide. AAPS PharmSciTech. 2015;16(2):344-53. doi: 10.1208/s12249-014-0229-1, PMID 25319054.

16. Petra D, Biljana J. Designing polyethylene oxide and hydroxypropyl methylcellulose matrix tablets with comparable dissolution properties. Afr J Pharm Pharmacol. 2020;14(4):87-98. doi: 10.5897/AJPP2020.5133.

17. Garg N, Pandey P, Kaushik D, Dureja H. Development of novel multifunction directly compressible co-processed excipient by melt granulation technique. Int J Pharm Investig. 2015;5(4):266-74. doi: 10.4103/2230-973X.167692, PMID 26682197.

18. Rantanen J, Antikainen O, Mannermaa JP, Yliruusi J. Use of the near infrared reflectance method for measurement of moisture content during granulation. Pharm Dev Technol. 2000;5(2):209-17. doi: 10.1081/pdt-100100536, PMID 10810751.

19. Sinko PJ. Martin’s physical pharmacy and pharmaceutical sciences. Lippincott Williams & Wilkins; 2023.

20. Aulton ME, Taylor K. Aulton's pharmaceutics: the design and manufacture of medicines. Elsevier Health Sciences; 2013.

21. Cohen JL, Hubert BB, Leeson LJ, Rhodes CT, Robinson JR, Roseman TJ. The development of USP dissolution and drug release standards. Pharm Res. 1990;7(10):983-7. doi: 10.1023/a:1015922629207, PMID 2281043.

22. Khagga B, Kaitha MV, Dammu R, Mogili S. ICH guidelines “Q” series (quality guidelines) a review. GSC Biol and Pharm Sci. 2019;6(3):89-106. doi: 10.30574/gscbps.2019.6.3.0034.

23. Ghanbari E, Picken SJ, Van Esch JH. Analysis of differential scanning calorimetry (DSC): determining the transition temperatures and enthalpy and heat capacity changes in multicomponent systems by analytical model fitting. J Therm Anal Calorim. 2023;148(22):12393-409. doi: 10.1007/s10973-023-12356-1.

24. Tahara K, Yamamoto K, Nishihata T. Overall mechanism behind matrix sustained release (SR) tablets prepared with hydroxypropyl methylcellulose 2910. J Control Release. 1995;35(1):59-66. doi: 10.1016/0168-3659(95)00021-Y.

25. Sujja Areevath J, Munday DL, Cox PJ, Khan KA. Relationship between swelling erosion and drug release in hydrophillic natural gum mini-matrix formulations. Eur J Pharm Sci. 1998;6(3):207-17. doi: 10.1016/s0928-0987(97)00072-9, PMID 9795062.

26. Sung KC, Nixon PR, Skoug JW, Ju TR, Gao P, Topp EM. Effect of formulation variables on drug and polymer release from HPMC-based matrix tablets. Int J Pharm. 1996;142(1):53-60. doi: 10.1016/0378-5173(96)04644-3.

27. Patra CN, Swain S, Mahanty S, Panigrahi KC. Design and characterization of aceclofenac and paracetamol spherical crystals and their tableting properties. Powder Technol. 2015;274:446-54. doi: 10.1016/j.powtec.2015.01.053.

28. Jammula S, Patra CHN, Swain S, Panigrahi KC, Nayak S, Dinda SC. Design and characterization of cefuroxime axetil biphasic floating minitablets. Drug Deliv. 2015;22(1):125-35. doi: 10.3109/10717544.2013.871603, PMID 24417642.

29. Prakash SS, Patra CN, Santanu C, Kumar PH, Patro VJ, Devi MV. Studies on flowability compressibility and in vitro release of Terminalia chebula fruit powder tablets. Iranian Journal of Pharmaceutical Research. 2011;10(3):393-401. doi: 10.22037/ijpr.2010.894.

30. Talevi A, Ruiz ME. Korsmeyer peppas peppas sahlin and brazel peppas: models of drug release. The ADME Encyclopedia: a Comprehensive Guide on Biopharmacy and Pharmacokinetics; 2022. p. 613-21. doi: 10.1007/978-3-030-84860-6.

31. Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA. Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm. 1983;15(1):25-35. doi: 10.1016/0378-5173(83)90064-9.

32. Lee PI. Kinetics of drug release from hydrogel matrices. J Control Release. 1985;2:277-88. doi: 10.1016/0168-3659(85)90051-3.

33. Peppas NA, Duncan R, Wnek GE, Hoffman AS, Gao GH, Kim SW. Highly cited research articles in Journal of Controlled Release: commentaries and perspectives by authors. J Control Release. 2014;190:29-74. doi: 10.1016/S0168-3659(14)00482-9.

Published

07-11-2025

How to Cite

DAS, D., KUMAR, A., & PATRA, C. N. (2025). PREPARATION AND OPTIMIZATION OF GEPIRONE HCL SR MATRIX TABLETS USING HPMC K100M AND POLYOX WSR N80. International Journal of Applied Pharmaceutics, 17(6), 174–183. https://doi.org/10.22159/ijap.2025v17i6.54651

Issue

Section

Original Article(s)

Similar Articles

<< < 111 112 113 114 115 > >> 

You may also start an advanced similarity search for this article.