UNLOCKING THE POTENTIAL OF BETALAIN COMPOUNDS FROM BEETROOT: TARGETING STREPTOCOCCUS MUTANS IN DENTAL CARIES THROUGH MOLECULAR DOCKING, ADMET PROFILING, AND ANTIBACTERIAL ACTIVITY

Authors

  • SOFA FAJRIAH Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), West Java, Indonesia
  • NUR FITRIANA Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), West Java, Indonesia
  • ILMA FAUZIAH MA’RUF Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), West Java, Indonesia https://orcid.org/0000-0001-9641-8222
  • RIFALDI Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), West Java, Indonesia https://orcid.org/0000-0003-1505-512X
  • FADHILA UTARI Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), West Java, Indonesia
  • BANTARI WISYNU KUSUMA WARDHANI Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), West Java, Indonesia. Faculty of Military Pharmacy, Republic Indonesia Defense University, Sentul, West Java https://orcid.org/0000-0001-7376-6187
  • SUSI KUSUMANINGRUM Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), West Java, Indonesia
  • YAHDIANA HARAHAP Faculty of Military Pharmacy, Republic Indonesia Defense University, Sentul, West Java. Faculty of Pharmacy, Universitas Indonesia, West Java, Indonesia
  • SRI RATNA LAKSMIASTUTI Faculty of Dentistry, Universitas Trisakti, Jakarta, Indonesia
  • REYNATHA C.A. PANGSIBIDANG Faculty of Military Pharmacy, Republic Indonesia Defense University, Sentul, West Java https://orcid.org/0000-0001-6065-9008

DOI:

https://doi.org/10.22159/ijap.2026v18i1.54794

Keywords:

Betalains, Beta vulgaris, Streptococcus mutans, Biofilm inhibition, Glucosyltransferase, Antigen I/II, Dental disclosing solution

Abstract

Objective: Dental caries, primarily caused by Streptococcus mutans, pose a significant global health challenge, often treated with fluoride and synthetic dyes like erythrosine, despite associated toxicity risks. This study explores betalains, natural pigments from Beta vulgaris (beetroot), as dual-function agents for plaque detection and biofilm inhibition.

Methods: Ten betalains were evaluated through in-silico absorption, distribution, metabolism, excretion, and toxicity (ADMET) analysis and molecular docking against glucosyltransferase and antigen I/II (Ag 1/II), key proteins in biofilm formation. Antibacterial activity against S. mutans was performed to determine the inhibition zone and minimum inhibitory concentration (MIC) of beetroot extracts.

Results: Docking validation showed root mean square deviation (RMSD) values below 4 Å, confirming reliability. Isobetanin exhibited the strongest binding affinities (-10.427 and -10.893kcal/mol) and interacted with active residues GLU515 and ASP477, crucial for biofilm formation. High solubility, low toxicity, and limited systemic absorption make betalains ideal for topical applications, such as dental disclosing solutions. In vitro studies have shown that the beetroot ethanol extract from Magelang has higher antibacterial activity than betalains. The beetroot ethanol extract contains not only betalains but also other compounds that synergistically inhibit the growth of S. mutans.

Conclusion: These findings highlight betalains as safer, natural alternatives to synthetic dyes, paving the way for innovative and sustainable dental care formulations with enhanced safety and efficacy. Additionally, further study needs to determine the effectiveness of the extracts in inhibiting dental caries formation.

References

1. Zhang G, Lu M, Liu R, Tian Y, Vu VH, Li Y, Liu B, Kushmaro A, Li Y, Sun Q. Inhibition of Streptococcus mutans Biofilm Formation and Virulence by Lactobacillus plantarum K41 Isolated from Traditional Sichuan Pickles. Front Microbiol. 2020 Apr;11:774. doi: 10.3389/fmicb.2020.00774.

2. Sun S, Lou Y, Weng X, Xie C, Ma H, Sun Z, Wang Q, Yang Y, Ji K, Ying B. Dental Caries Prevalence and Caries-Associated Risk Factors of Students Aged 12-15 in Xide County of Liangshan Prefecture, China: a cross-sectional study. BMJ Open. 2024 Aug;14(8):e082922. doi: 10.1136/bmjopen-2023-082922.

3. Fasoulas A, Pavlidou E, Petridis D, Mantzorou M, Seroglou K, Giaginis C. Detection of Dental Plaque with Disclosing Agents in The Context of Preventive Oral Hygiene Training Programs. Heliyon. 2019 Jul;5(7):e02064. doi: 10.1016/j.heliyon.2019.e02064.

4. Furquim Dos Santos Cardoso V, Amaral Roppa RH, Antunes C, Silva Moraes AN, Santi L, Konrath EL. Efficacy of Medicinal Plant Extracts as Dental and Periodontal Antibiofilm Agents: A Systematic Review of Randomized Clinical Trials. J Ethnopharmacol. 2021 Aug;281:114541. doi: 10.1016/j.jep.2021.114541.

5. Budala DG, Martu MA, Maftei GA, Diaconu-Popa DA, Danila V, Luchian I. The Role of Natural Compounds in Optimizing Contemporary Dental Treatment-Current Status and Future Trends. J Funct Biomater. 2023 May;14(5). doi: 10.1016/j.sciaf.2023.e0159310.3390/jfb14050273.

6. Montoya C, Roldan L, Yu M, Valliani S, Ta C, Yang M, Orrego S. Smart Dental Materials for Antimicrobial Applications. Bioact Mater. 2023 Dec;24:1–19. doi: 10.1016/j.bioactmat.2022.12.002.

7. Fu Y, Shi J, Xie SY, Zhang TY, Soladoye OP, Aluko RE. Red Beetroot Betalains: Perspectives on Extraction, Processing, and Potential Health Benefits. J Agric Food Chem. 2020 Oct;68(42):11595–611. doi: 10.1021/acs.jafc.0c04241. PMID 33040529.

8. S Gabal AM, M Morsy G. Impact of Beetroot (Beta Vulgaris Rubra) and/or Swiss Chard (Beta Vulgaris Cicla) Juices Oral Administration Against Barium Chloride-Induced Hypokalemia, Atpase Disturbance Heart and Lung Toxicity in Rats. Asian J Pharm Clin Res. 2020 Aug;13(8):218–24. doi: 10.22159/ajpcr.2020.v13i8.38232.

9. Wijesinghe VN, Choo WS. Antimicrobial Betalains. J Appl Microbiol. 2022 Sept;133(6):3347–67. doi: doi.org/10.1111/jam.15798. PMID: 36036373

10. Kusznierewicz B, Mróz M, Koss-Mikołajczyk I, Namieśnik J. Comparative Evaluation of Different Methods for Determining Phytochemicals and Antioxidant Activity in Products Containing Betalains – Verification of Beetroot Samples. Food Chem. 2021 Nov;362:130132. doi: 10.1016/j.foodchem.2021.130132.

11. Sadowska-Bartosz I, Bartosz G. Biological Properties and Applications of Betalains. Molecules. 2021 Apr;26(9). doi: 10.3390/molecules26092520. PMID: 33925891.

12. Martínez-Rodríguez P, Guerrero-Rubio MA, Henarejos-Escudero P, García-Carmona F, Gandía-Herrero F. Health-Promoting Potential of Betalains In vivo and Their Relevance as Functional Ingredients: A review. Trends Food Sci Technol. 2022 Apr;122:66–82. doi: 10.1016/j.tifs.2022.02.020.

13. Jauhar MM, Syaifie PH, Arda AG, Ramadhan D, Nugroho DW, Kaswati NMN, Noviyanto A, Rochman NT, Mardliyati E. Evaluation of Propolis Activity as Sucrose-Dependent and Sucrose-Independent Streptococcus mutans Inhibitors to Treat Dental Caries using an In Silico Approach. J Appl Pharm Sci. 2023 Mar;13(3):71–80. doi: 10.7324/JAPS.2023.45365.

14. Rivera-Quiroga RE, Cardona N, Padilla L, Rivera W, Rocha-Roa C, Diaz De Rienzo MA, Morales SM, Martinez MC. In Silico Selection and In Vitro Evaluation of New Molecules That Inhibit the Adhesion of Streptococcus mutants through Antigen I/II. Int J Mol Sci. 2020 Dec;22(1). doi: 10.3390/ijms22010377. PMID: 33396525

15. Bess A, Berglind F, Mukhopadhyay S, Brylinski M, Griggs N, Cho T, Galliano C, Wasan KM. Artificial Intelligence for The Discovery of Novel Antimicrobial Agents for Emerging Infectious Diseases. Drug Discov Today. 2022 Nov;27(4):1099–107. doi: 10.1016/j.sciaf.2023.e0159310.1016/j.drudis.2021.10.022. PMID: 34748992

16. Asiamah I, Obiri SA, Tamekloe W, Armah FA, Borquaye LS. Applications of Molecular Docking in Natural Products-Based Drug Discovery. Sci Afr. 2023 Jul;20:e01593. doi: 10.1016/j.sciaf.2023.e01593.

17. Singh A. Artificial Intelligence for Drug Repurposing Against Infectious Diseases. Artif Intell Chem. 2024 Dec;2(2):100071. doi: 10.1016/j.aichem.2024.100071.

18. Singh A, Jatav VK, Sharma S. Virtual Screening and Admet Analysis for Identification of Inhibitors Against Acetylcholinesterase Associated with Alzheimer’s Disease. Int J Pharm Pharm Sci. 2014 Oct;6(10):155–9.

19. Rotich V, Wangila P, Cherutoi J. Method Validation and Characterization of Red Pigment in Beta vulgaris Peels and Pomaces by HPLC-UV and UHPLC-MS/MS. J Anal Methods Chem. 2022 Aug;2022:2229500. doi: 10.1155/2022/2229500. PMID: 36052342

20. Wybraniec S, Starzak K, Szneler E, Pietrzkowski Z. Separation of Chlorinated Diastereomers of Decarboxy-betacyanins in Myeloperoxidase Catalyzed Chlorinated Beta vulgaris L. Extract. J Chromatogr B. 2016 Nov;1036–1037:20–32. doi: 10.1016/j.jchromb.2016.09.040.

21. Hempel J, Böhm H. Betaxanthin Pattern of Hairy Roots from Beta vulgaris var. lutea and Its Alteration by Feeding of Amino Acids. Phytochemistry. 1997 Mar;44(5):847–52. doi: 10.1016/S0031-9422(96)00633-4.

22. Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR. Avogadro: An Advanced Semantic Chemical Editor, Visualization, and Analysis Platform. J Cheminform. 2012 Aug;4(1):17. doi: 10.1186/1758-2946-4-17.

23. Dallakyan S, Olson AJ. Small-Molecule Library Screening by Docking with PyRx. Methods Mol Biol. 2015;1263:243–50. doi: 10.1007/978-1-4939-2269-7_19. PMID: 25618350.

24. Eberhardt J, Santos-Martins D, Tillack AF, Forli S. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. J Chem Inf Model. 2021 Jul;61(8):3891–8. doi: 10.1021/acs.jcim.1c00203. PMID: 34278794

25. Bell EW, Zhang Y. DockRMSD: An Open-Source Tool for Atom Mapping and RMSD Calculation of Symmetric Molecules Through Graph Isomorphism. J Cheminform. 2019 Jun;11(1):40. doi: 10.1016/j.sciaf.2023.e0159310.1186/s13321-019-0362-7. PMID: 31175455

26. Che X, Liu Q, Zhang L. An Accurate and Universal Protein-Small Molecule Batch Docking Solution using Autodock Vina. Results in Engineering. 2023 Sept;19:101335. doi: 10.1016/j.sciaf.2023.e0159310.1016/j.rineng.2023.101335.

27. Che X, Zhang L. Blind Docking Methods ave been Inappropriately Used in Most Network Pharmacology Analysis. Front Pharmacol. 2025 Mar;16:1566772. doi: 10.1016/j.sciaf.2023.e0159310.3389/fphar.2025.1566772. PMID: 40196361

28. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. UCSF Chimera--a Visualization System for Exploratory Research and Analysis. J Comput Chem. 2004 Oct;25(13):1605–12. doi: 10.1002/jcc.20084. PMID: 15264254.

29. Abdi Wira S, Aprilia Nur T, Rhesi K, Amit J. Chemical Profiles of Essential Oil from Javanese Turmeric (Curcuma xanthorrhiza Roxb.), Evaluation of Its Antibacterial and Antibiofilm Activities Against Selected Clinical Isolates. S Afr J Bot. 2022 May;146:728–34. doi: 10.1016/j.sajb.2021.12.017.

30. Ojo OA, Gyebi GA, Ezenabor EH, Iyobhebhe M, Emmanuel DA, Adelowo OA, Olujinmi FE, Ogunwale TE, Babatunde DE, Ogunlakin AD, Ojo AB, Adeyemi OS. Exploring Beetroot (Beta vulgaris L.) for Diabetes Mellitus and Alzheimer’s Disease Dual Therapy: In Vitro and Computational Studies. RSC Adv. 2024 Jun;14(27):19362–80. doi: 10.1039/d4ra03638g. PMID: 38887650.

31. Daina A, Michielin O, Zoete V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci Rep. 2017 Mar;7:42717. doi: 10.1016/j.sciaf.2023.e0159310.1038/srep42717. PubMed PMID: 28256516.

32. Di Stefano M, Galati S, Piazza L, Granchi C, Mancini S, Fratini F, Macchia M, Poli G, Tuccinardi T. VenomPred 2.0: A Novel In Silico Platform for an Extended and Human Interpretable Toxicological Profiling of Small Molecules. J Chem Inf Model. 2024 Jul;64(7):2275–89. doi: 10.1021/acs.jcim.3c00692. PMID: 37676238

33. Möbitz H. Design Principles for Balancing Lipophilicity and Permeability in beyond Rule of 5 Space. ChemMedChem. 2024;19(5):e202300395. doi: 10.1002/cmdc.202300395.

34. Rancan F, Volkmann H, Giulbudagian M, Schumacher F, Stanko JI, Kleuser B, Blume-Peytavi U, Calderón M, Vogt A. Dermal Delivery of the High-Molecular-Weight Drug Tacrolimus by Means of Polyglycerol-Based Nanogels. Pharmaceutics. 2019 Aug;11(8). doi: 10.3390/pharmaceutics11080394. PMID: 31387279

35. Liu S, Deng T, Cheng H, Lu J, Wu J. Advances in Transdermal Drug Delivery Systems and Clinical Applications in Inflammatory Skin Diseases. Pharmaceutics. 2025 Jun;17(6). doi: 10.3390/pharmaceutics17060746. PMID: 40574058

36. Bonet IJM, Araldi D, Green PG, Levine JD. Topical Coapplication of Hyaluronan with Transdermal Drug Delivery Enhancers Attenuates Inflammatory and Neuropathic Pain. Pain. 2023 Jul;164(12):2653–64. doi: 10.1016/j.sciaf.2023.e0159310.1097/j.pain.0000000000002993. PMID: 37467181

37. Knoll KE, van der Walt MM, Loots DT. In Silico Drug Discovery Strategies Identified ADMET Properties of Decoquinate RMB041 and Its Potential Drug Targets against Mycobacterium tuberculosis. Microbiol Spectr. 2022 Mar;10(2):e0231521. doi: 10.1128/spectrum.02315-21. PMID: 35352998

38. Suwendar S, Sani Ega P, Dina M, Taufik Muhammad F, Ibrahim J. Assessment of Phytochemicals from Syzygium aqueum as Inhibitors of ATP-Dependent 6-Phosphofructokinase: In Silico and In Vitro Studies. Pharmacia. 2024;71:1–17. doi: 10.3897/pharmacia.71.e132917.

39. Hamdoon YS, Hadi MK. Molecular Docking, ADMET, Synthesis and Evaluation of New Indomethacin Hydrazide Derivatives as Antibacterial Agents. Pharmacia. 2024;71:1–10. doi: 10.3897/pharmacia.71.e127784.

40. Dhapte-Pawar V, Kothe B, Bhadekar R. Exploring Potential of Tobramycin Complexes for Combating Biofilms: In Silico and In Vitro Studies. Hybrid Adv. 2024 Dec;7:100328. doi: 10.1016/j.hybadv.2024.100328.

41. Martins FG, Melo A, Sousa SF. Identification of New Potential Inhibitors of Quorum Sensing through a Specialized Multi-Level Computational Approach. Molecules. 2021 Apr;26(9). doi: 10.3390/molecules26092600. PMID: 33946907

42. Gamboa F, Gomez OL, Alvarado A, Bustillo J. Antimicrobial Susceptibility of Streptococcus mutans Biotypes. Int J Infect Dis. 2008 Dec;12:e257. doi: 10.1016/j.ijid.2008.05.695.

43. Davis WW, Stout TR. Disc Plate Method of Microbiological Antibiotic Assay. I. Factors Influencing Variability and Error. Appl Microbiol. 1971 Oct;22(4):659–65. doi: 10.1128/am.22.4.659-665.1971. PMID: 5002143.

44. Ulfa Y, Adjiedarmo I, Christianti Y, Sulistiawati S, Negara M. Antibacterial Effectiveness of Beetroot Against Streptococcus mutans. B-Dent: Jurnal Kedokteran Gigi Universitas Baiturrahmah. 2022 Jun;9:33–43. doi: 10.33854/jbd.v9i1.938.

45. Saani M, Lawrence R. Beta vulgaris Root Extracts: as Free Radical Scavengers and Antibacterial Agent. Orient J Chem. 2020 Aug;36:733–41. doi: 10.13005/ojc/360419.

46. Vijaya D, Thangaraj N. Extraction of Betalains from Red Beetroot (Beta vulgaris L.) and to Evaluate Its Antibacterial Potential Against Extended-Spectrum beta lactamase Producing Isolates. J Pharmaceutic Sci Res. 2019 Jun;11(6):2422–5.

47. El-Beltagi H, Mohamed H, Megahed B, Gamal M, Safwat G. Evaluation of Some Chemical Constituents, Antioxidant, Antibacterial, and Anticancer Activities of Beta vulgaris L. Root. Fresenius Environ Bull. 2018 Aug;27:6369–78.

48. Omogbai BA, Omoregie IA. Chemical Analysis and Biological Activity of Natural Preservative from Beet root (Beta vulgaris) Against Foodborne Pathogens and Spoilage Organisms. Afr Sci. 2016 Jun;17(2):135–45.

49. Setyorini D, Rahayu Y. The Effect of Rinsing Red Beet Root (Beta vulgaris L) Juice on Streptocoocus sp Dental Plaque. J Dentomaxillofac Sci. 2017 Apr; 2(1): 15-17. doi: 10.15562/jdmfs.v2i1.460.

50. Chen M, Zhao Z, Meng H, Yu S. The ntibiotic Activity and Mechanisms of Sugar Beet (Beta vulgaris) Molasses Polyphenols Against Selected Food-borne Pathogens. LWT - Food Sci Technol. 2017 Sept;82:354–60. doi: 10.1016/j.lwt.2017.04.063.

51. Cipriano-Salazar M, Rojas-Hernández S, Olivares-Pérez J, Jiménez-Guillén R, Cruz-Lagunas B, Camacho-Díaz LM, Ugbogu AE. Antibacterial Activities of Tannic Acid Against Isolated Ruminal Bacteria from Sheep. Microb Pathog. 2018 Feb;117:255–8. doi: 10.1016/j.sciaf.2023.e0159310.1016/j.micpath.2018.01.045. PMID: 29471138

52. Herawati D, Ekawati ER, Yusmiati SNH. Identification of Saponins and Flavonoids in Lime (Citrus aurantifolia) Peel Extract. Proceedings of the 5 th NA International Conference on Industrial Engineering and Operations Management. 2020;3661–6.

Published

11-11-2025

How to Cite

FAJRIAH, S., FITRIANA, N., MA’RUF, I. F., RIFALDI, UTARI, F., KUSUMA WARDHANI, B. W., … PANGSIBIDANG, R. C. (2025). UNLOCKING THE POTENTIAL OF BETALAIN COMPOUNDS FROM BEETROOT: TARGETING STREPTOCOCCUS MUTANS IN DENTAL CARIES THROUGH MOLECULAR DOCKING, ADMET PROFILING, AND ANTIBACTERIAL ACTIVITY. International Journal of Applied Pharmaceutics, 18(1). https://doi.org/10.22159/ijap.2026v18i1.54794

Issue

Section

Original Article(s)

Similar Articles

<< < 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.