STUDY THE EFFECT OF CONJUGATED NOVEL ULTRASHORT ANTIMICROBIAL PEPTIDES IN COMBINATION WITH FARNESYL AGAINST RESISTANCE STRAINS OF PSEUDOMONAS AERUGINOSA

Authors

  • ALI SALAMA Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa-13133, Jordan https://orcid.org/0000-0003-2141-5857
  • SANDRELLA MOHAMMED SAIF Faculty of Pharmacy, Middle East University, Amman-Jordan

DOI:

https://doi.org/10.22159/ijap.2026v18i1.55076

Keywords:

Pseudomonas aeruginosa, Antimicrobial peptides (AMPs), Multi-drug-resistant, Antibiotics, Bacterial activity

Abstract

Objective: The objective of this study was to design and evaluate a novel ultrashort antimicrobial peptide, San-112003, structurally conjugated with a farnesyl chain, for its potential antibacterial activity against both antibiotic-susceptible and multi-drug-resistant (MDR) strains of Pseudomonas aeruginosa. Given the rising threat of antimicrobial resistance and the limitations of conventional antibiotics, antimicrobial peptides (AMPs) are explored as a promising alternative. This study aimed to assess the efficacy, toxicity, and potential synergism of San-112003 with conventional antibiotics

Methods: In this study, we designed and synthesized a novel ultrashort antimicrobial peptide, San-112003, which incorporates repeating tripeptide units (tryptophan–arginine–glycine) chemically conjugated to a farnesyl chain. This structural design enhances membrane targeting and antimicrobial potency. The antimicrobial efficacy of San-112003 was evaluated against both antibiotic-susceptible and MDR strains of P. aeruginosa. Hemolytic toxicity assays were conducted on human red blood cells, and synergy studies were performed in combination with conventional antibiotics, including gentamicin.

Results: San-112003 was successfully synthesized with 99% purity and correct molecular mass confirmation. The peptide showed low cytotoxicity in MTT assays across tested concentrations. It demonstrated potent bactericidal activity against Pseudomonas aeruginosa, with MIC and MBC values of 0.5 µg/mL for the control strain and 2.5 µg/mL for the MDR strain. Hemolysis testing indicated minimal toxicity at concentrations relevant to antimicrobial activity. Synergy testing revealed the greatest enhancement in bacterial inhibition when combined with gentamicin, with FICI values of 0.075 for the control strain and 0.20 for the MDR strain. Additionally, the peptide–antibiotic combinations reduced bacterial biofilm viability more effectively than the peptide alone.

Conclusion: San-112003 is a promising AMP–farnesyl conjugate with potent activity against P. aeruginosa, including MDR strains. Its synergism with gentamicin and low hemolytic toxicity suggest that AMP–antibiotic combinations could serve as a valuable strategy against antibiotic resistance.

References

1. Yin R, Cheng J, Wang J, Li P, Lin J. Treatment of Pseudomonas aeruginosa Pseudomonas aeruginosa infectious biofilms: Challenges and strategies. Frontiers in Microbiology. 2022;13:955286. DOI: https://doi.org/10.3389/fmicb.2022.955286

2. Dolan SK. Current knowledge and future directions in developing strategies to combat Pseudomonas aeruginosa infection. Journal of Molecular Biology. 2020;432(20):5509-5528.

3. Langendonk RF, Neill DR, Fothergill JL. The building blocks of antimicrobial resistance in Pseudomonas aeruginosa: Implications for current resistance-breaking therapies. Frontiers in Cellular and Infection Microbiology. 2021;11:665759. DOI: https://doi.org/10.3389/fcimb.2021.665759

4. Klubthawee N, Adisakwattana P, Hanpithakpong W, Somsri S, Aunpad R. A novel, rationally designed, hybrid antimicrobial peptide, inspired by cathelicidin and aurein, exhibits membrane-active mechanisms against Pseudomonas aeruginosa. Scientific Reports. 2020;10(1):9117. DOI: https://doi.org/10.1038/s41598-020-66352-6

5. Masihzadeh S, Amin M, Farshadzadeh Z. In vitro and in vivo antibiofilm activity of the synthetic antimicrobial peptide WLBU2 against multiple drug resistant Pseudomonas aeruginosa strains. BMC Microbiology. 2023;23(1):131. DOI: https://doi.org/10.1186/s12866-023-02961-5

6. Yin Q, Wu S, Wu L, et al. A novel in silico antimicrobial peptide DP7 combats MDR Pseudomonas aeruginosa and related biofilm infections. Journal of Antimicrobial Chemotherapy. 2020;75(11):3248-3259. DOI: https://doi.org/10.1093/jac/dkaa265

7. Jahangiri A, Neshani A, Mirhosseini SA, et al. Synergistic effect of two antimicrobial peptides, Nisin and P10, with conventional antibiotics against extensively drug-resistant Acinetobacter baumannii and colistin-resistant Pseudomonas aeruginosa isolates. Microbial Pathogenesis. 2021;150:104700. DOI: https://doi.org/10.1016/j.micpath.2020.104700

8. Bussmann RW, Sharon D. Plantasmedicinales de los Andes y la Amazonía—La flora mágica y medicinal del Norte del Perú. Ethnobotany Research and Applications. 2018;15. DOI: https://doi.org/10.32859/era.15.1.001-293

9. Grumaz C, Hoffmann A, Vainshtein Y, et al. Rapid next-generation sequencing-based diagnostics of bacteremia in septic patients. The Journal of Molecular Diagnostics. 2020;22(3):405-418. DOI: https://doi.org/10.1016/j.jmoldx.2019.12.006

10. Almaaytah A, Qaoud MT, Abualhaijaa M, et al. Hybridization and antibiotic synergism as a tool for reducing the cytotoxicity of antimicrobial peptides. Infection and Drug Resistance. 2018;11:835-847. DOI: https://doi.org/10.2147/IDR.S166236

11. Birteksoz-Tan S, Zeybek Z, Hacioglu M, et al. In vitro activities of antimicrobial peptides and ceragenins against Legionella pneumophila. The Journal of Antibiotics. 2019;72(5):291-297. DOI: https://doi.org/10.1038/s41429-019-0148-1

12. Lee Y, Chen P-Y, Wang J-T, Chang S-C. A study on combination of daptomycin with selected antimicrobial agents: In vitro synergistic effect of MIC value of 1 mg/L against MRSA strains. BMC Clinical Pharmacology. 2019;20(1). DOI: https://doi.org/10.1186/s40360-019-0305-y

13. Kowalska-Krochmal B, Dudek-Wicher R. The minimum inhibitory concentration of antibiotics: Methods, interpretation, clinical relevance. Pathogens. 2021;10(2):165. DOI: https://doi.org/10.3390/pathogens10020165

14. Patil SV. In vitro fractional inhibitory concentration (FIC) study of cefixime and azithromycin fixed-dose combination (FDC) against respiratory clinical isolates. Journal of Clinical and Diagnostic Research. 2015. DOI: https://doi.org/10.7860/jcdr/2015/12092.5560

15. Bidaud A-L, Schwarz P, Herbreteau G, Dannaoui E. Techniques for the assessment of in vitro and in vivo antifungal combinations. Journal of Fungi. 2021;7(2):113. DOI: https://doi.org/10.3390/jof7020113

16. Oh R, Lee MJ, Kim YO, et al. Myticusin-beta, antimicrobial peptide from the marine bivalve, Mytilus coruscus. Fish & Shellfish Immunology. 2020;99:342-352. DOI: https://doi.org/10.1016/j.fsi.2020.02.020

17. Yasir M, Dutta D, Willcox MD. Activity of antimicrobial peptides and ciprofloxacin against Pseudomonas aeruginosa biofilms. Molecules. 2020;25(17):3843. DOI: https://doi.org/10.3390/molecules25173843

18. Kim H, Jang JH, Kim SC, Cho JH. Development of a novel hybrid antimicrobial peptide for targeted killing of Pseudomonas aeruginosa. European Journal of Medicinal Chemistry. 2020;185:111814. DOI: https://doi.org/10.1016/j.ejmech.2019.111814

19. Martins AF, Rabinowitz P. The impact of antimicrobial resistance in the environment on public health. Future Microbiology. 2020;15(9):699-702. DOI: https://doi.org/10.2217/fmb-2019-0331

20. Xu S-J, Chen J-H, Chang S, Li H-L. The role of miRNAs in T helper cell development, activation, fate decisions, and tumor immunity. Frontiers in Immunology. 2024;14. DOI: https://doi.org/10.3389/fimmu.2023.1320305

21. Zharkova MS, Orlov DS, Golubeva OY, et al. Application of antimicrobial peptides of the innate immune system in combination with conventional antibiotics—a novel way to combat antibiotic resistance. Frontiers in Cellular and Infection Microbiology. 2019;9. DOI: https://doi.org/10.3389/fcimb.2019.00128

22. Han X, Kou Z, Jiang F, et al. Interactions of designed Trp-containing antimicrobial peptides with DNA of multidrug-resistant Pseudomonas aeruginosa. DNA and Cell Biology. 2021;40(2):414-424. DOI: https://doi.org/10.1089/dna.2020.5890

23. Wang K, Wang J, Li L, et al. Synthesis of a novel anti-freezing, non-drying antibacterial hydrogel dressing by one-pot method. Chemical Engineering Journal. 2019;372:216-225. DOI: https://doi.org/10.1016/j.cej.2019.04.107

24. Aiemsaard J, Singh R, Borlace GN, et al. Antibacterial activity of cannabis extract (Cannabis sativa L. subsp. indica (Lam.)) against canine skin infection bacterium Staphylococcus pseudintermedius. ScienceAsia. 2022;48(3):348. DOI: https://doi.org/10.2306/scienceasia1513-1874.2022.053

25. Yasir M, Willcox MDP, Dutta D. Action of antimicrobial peptides against bacterial biofilms. Materials. 2018;11(12):2468. DOI: https://doi.org/10.3390/ma11122468

26. Porto WF, Irazazabal L, Alves ESF, et al. In silico optimization of a guava antimicrobial peptide enables combinatorial exploration for peptide design. Nature Communications. 2018;9(1). DOI: https://doi.org/10.1038/s41467-018-03746-3

27. Patrulea V, Gan BH, Perron K, et al. Synergistic effects of antimicrobial peptide dendrimer-chitosan polymer conjugates against Pseudomonas aeruginosa. Carbohydrate Polymers. 2022;280:119025. DOI: https://doi.org/10.1016/j.carbpol.2021.119025

28. Huang F, Cai X, Hou X, et al. A dynamic covalent polymeric antimicrobial for conquering drug-resistant bacterial infection. Exploration. 2022;2(5). DOI: https://doi.org/10.1002/exp.20210145

29. Parducho KR, Beadell B, Ybarra TK, et al. The antimicrobial peptide human beta-defensin 2 inhibits biofilm production of Pseudomonas aeruginosa without compromising metabolic activity. Frontiers in Immunology. 2020;11:805. DOI: https://doi.org/10.3389/fimmu.2020.00805

30. Han X, Zheng J, Lin F, et al. Interactions between surface-immobilized antimicrobial peptides and model bacterial cell membranes. Langmuir. 2017;34(1):512-520. DOI: https://doi.org/10.1021/acs.langmuir.7b03411

Published

11-11-2025

How to Cite

SALAMA, A., & MOHAMMED SAIF, S. (2025). STUDY THE EFFECT OF CONJUGATED NOVEL ULTRASHORT ANTIMICROBIAL PEPTIDES IN COMBINATION WITH FARNESYL AGAINST RESISTANCE STRAINS OF PSEUDOMONAS AERUGINOSA. International Journal of Applied Pharmaceutics, 18(1). https://doi.org/10.22159/ijap.2026v18i1.55076

Issue

Section

Original Article(s)

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.