MOLECULAR DOCKING AND GRAPHICAL TRAJECTORY ANALYSIS OF CINNAMOMUM ZEYLANICUM COMPOUNDS FOR TARGETING HUMAN MALTASE-GLUCOAMYLASE IN DIABETES MANAGEMENT

Authors

  • VYSHNAVI VISHWANADHAM RAO Department of Chemistry, MES College of Arts, Science and Commerce, Bengaluru-560003, India. Department of Biotechnology, PES University, Bengaluru-560085, India https://orcid.org/0009-0006-2769-0963
  • KOPPALA NARAYANAPPA SHANTI Department of Biotechnology, PES University, Bengaluru-560085, India
  • DINESH SOSALAGERE MANJEGOWDA Department of Human Genetics, School of Basic and Applied Sciences, Dayananda Sagar University, Bengaluru-560078, Karnataka, India https://orcid.org/0000-0001-8915-3983

DOI:

https://doi.org/10.22159/ijap.2025v17i6.55175

Keywords:

Alpha-cadinol, Cinnamomum zeylanicum, Diabetes management, In silico, Maltase-glucoamylase inhibition, Molecular dynamics, Molecular docking, Phytocompounds

Abstract

Objective: Maltase-glucoamylase is an essential enzyme involved in the final hydrolysis of dietary carbohydrates into glucose, facilitating postprandial glucose absorption. Its heightened activity exacerbates glucose spikes, a hallmark of type 2 diabetes, making it a pivotal target for therapeutic intervention. This research aims to explore the inhibitory potential of phytocompounds from Cinnamomum zeylanicum as promising enzyme inhibitors, with acarbose serving as a reference standard.

Methods: Eighteen phytocompounds were screened via molecular docking and molecular dynamics (MD) simulations. Binding affinity, residue interactions, and structural stability were assessed, alongside pharmacokinetic and toxicity profiling using absorption, distribution, metabolism, excretion, and toxicity (ADMET) tools.

Results: Alpha-cadinol and cis-4-Benzyl-2,6-diphenyltetrahydropyran emerged as top candidates with binding energies of-10.21 and-10.17 kcal/mol, respectively, surpassing acarbose (-9.11 kcal/mol). Interaction analysis revealed that alpha-cadinol formed hydrogen bonds with TYR A: 1251 and GLY A: 1588, while cis-4-Benzyl-2,6-diphenyltetrahydropyran engaged residues such as HIS A: 1710 and THR A: 1699 through a combination of hydrogen bonding and aromatic interactions. Molecular dynamics simulations confirmed the stability of these complexes, with root mean square deviation values of 0.33 nm for alpha-cadinol and 0.34 nm for cis-4-Benzyl-2,6-diphenyltetrahydropyran, comparable to acarbose. Reductions in solvent accessibility and root mean square fluctuation further demonstrated the stabilising effects of these compounds on the enzyme. Pharmacokinetic profiling revealed favourable absorption and bioavailability for both compounds, suggesting their suitability as oral therapeutics.

Conclusion: These findings highlight alpha-cadinol and cis-4-Benzyl-2,6-diphenyltetrahydropyran as potential alternatives to acarbose with possibly improved safety and efficacy profiles. However, in vitro and in vivo validation is necessary to confirm their therapeutic applicability and establish their metabolic stability. This study offers a significant step toward developing novel enzyme inhibitors for effective diabetes management and paves the way for future experimental and clinical exploration.

References

1. Tomic D, Shaw JE, Magliano DJ. The burden and risks of emerging complications of diabetes mellitus. Nat Rev Endocrinol. 2022;18(9):525-39. doi: 10.1038/s41574-022-00690-7, PMID 35668219, PMCID 9169030.

2. GBD. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021. Lancet. 2023;402(10397):203-34. doi: 10.1016/S0140-6736(23)01301-6, PMID 37356446, PMCID PMC10364581.

3. Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB. IDF Diabetes Atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022;183:(109119). doi: 10.1016/j.diabres.2021.109119. PMID 34879977, PMCID PMC11057359.

4. Bergman M, Tuomilehto J. International diabetes federation position statement on the 1 h post-load plasma glucose for the diagnosis of intermediate hyperglycaemia and type 2 diabetes. Diabetes Res Clin Pract. 2024;210:(111636). doi: 10.1016/j.diabres.2024.111636, PMID 38537890.

5. Das AK, Ghosh D, Ghosh J. Assessment of patients’ knowledge, attitude and practice regarding diabetes mellitus in a tertiary Care Hospital in eastern India. Asian J Pharm Clin Res. 2023;16(1):29-34. doi: 10.22159/ajpcr.2023.v16i1.46328.

6. Rajueni K, Ambekar R, Solanki H, Momin AA, Pawar S. Assessment of the possible causes of diabetes mellitus developed in patients post-COVID-19 treatment in a tertiary care hospital. Int J Pharm Pharm Sci. 2021;13(9):11-5. doi: 10.22159/ijpps.2021v13i9.42508.

7. Molecular docking simulation of mangostin derivatives and curcuminoid on maltase-glucoamylase target for searching anti-diabetes drug candidates. 1st International Conference on Biomedical Engineering (IBIOMED). IEEE; 2016.

8. Andayani N, Mulatsari E. Molecular structure similarity analysis using Tanimoto coefficient and its correlation analysis with Maltase-glucoamylase inhibitory activity of Nigella sativa’s compounds. J Nat Prod Degener Dis. 2024;2(1):48-57. doi: 10.58511/jnpdd.v2i1.7385.

9. Pyner A, Nyambe Silavwe H, Williamson G. Inhibition of human and rat sucrase and maltase activities to assess antiglycemic potential: optimization of the assay using acarbose and polyphenols. J Agric Food Chem. 2017;65(39):8643-51. doi: 10.1021/acs.jafc.7b03678. PMID 28914528.

10. Prasetyanti IK, Sukardiman S, Suharjono S. ADMET prediction and in silico analysis of mangostin derivatives and sinensetin on maltase-glucoamylase target for searching anti-diabetes drug candidates. Pharmacogn J. 2021;13(4):883-9. doi: 10.5530/pj.2021.13.113.

11. Dinesh S, Sharma S, Chourasiya R. Therapeutic applications of plant and nutraceutical-based compounds for the management of type 2 diabetes mellitus: A narrative review. Curr Diabetes Rev. 2024;20(2):e050523216593. doi: 10.2174/1573399819666230505140206, PMID 37151065.

12. Beheshti AS, Qazvini MM, Abeq M, Abedi E, Fadaei MS, Fadaei MR. Molecular, cellular, and metabolic insights of cinnamon (Cinnamomum zeylanicum) advantages in diabetes and related complications: condiment or medication? Naunyn Schmiedebergs Arch Pharmacol. 2025;398(4):3513-26. doi: 10.1007/s00210-024-03644-0, PMID 39589531.

13. Zare R, Nadjarzadeh A, Zarshenas MM, Shams M, Heydari M. Efficacy of cinnamon in patients with type II diabetes mellitus: a randomized controlled clinical trial. Clin Nutr. 2019;38(2):549-56. doi: 10.1016/j.clnu.2018.03.003, PMID 29605574.

14. Elkhattabi L, Zouhdi S, Moussetad F, Kettani A, Barakat A, Saile R. Molecular docking analysis of PPARγ with phytochemicals from Moroccan medicinal plants. Bioinformation. 2023;19(7):795-806. doi: 10.6026/97320630019795, PMID 37901293, PMCID PMC10605085.

15. Singh P, Singh VK, Singh AK. Molecular docking analysis of candidate compounds derived from medicinal plants with type 2 diabetes mellitus targets. Bioinformation. 2019;15(3):179-88. doi: 10.6026/97320630015179, PMID 31354193, PMCID PMC6637395.

16. Vijh D, Gupta P. GC-MS analysis, molecular docking, and pharmacokinetic studies on Dalbergia sissoo barks extracts for compounds with anti-diabetic potential. Sci Rep. 2024;14(1):24936. doi: 10.1038/s41598-024-75570-3, PMID 39438536, PMCID PMC11496555.

17. Jayasurya, Swathy, Susha, Sharma S. Molecular docking and investigation of Boswellia serrata phytocompounds as cancer therapeutics to target growth factor receptors: an in silico approach. Int J App Pharm. 2023;15(4):173-83. doi: 10.22159/ijap.2023v15i4.47833.

18. Edache EI, Uzairu A, Mamza PA, Shallangwa GA, Ibrahim MT. Evaluation of novel anti-SARS-CoV-2 compounds by targeting nucleoprotein and envelope protein through homology modeling, docking simulations, ADMET, and molecular dynamic simulations with the MM/GBSA calculation. Intell Pharm. 2024;2(3):346-66. doi: 10.1016/j.ipha.2024.02.008.

19. Mallur DJ, Lavanya B, Temkar SS, Arun V, Paul BC. Exploring okra-derived compounds as prospective aromatase inhibitors: a computational study for enhanced breast cancer therapy. J Biomol Struct Dyn. 2024:1-9. doi: 10.1080/07391102.2024.2335301, PMID 38887049.

20. Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7:42717. doi: 10.1038/srep42717, PMID 28256516, PMCID PMC5335600.

21. Banerjee P, Kemmler E, Dunkel M, Preissner R. ProTox 3.0: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2024;52(W1):W513-20. doi: 10.1093/nar/gkae303, PMID 38647086, PMCID PMC11223834.

22. Galgale S, Zainab R, Kumar A. Molecular docking and dynamic simulation-based screening identifies inhibitors of targeted SARS-CoV-2 3clpro and human ace2. Int J App Pharm. 2023:297-308. doi: 10.22159/ijap.2023v15i6.48782.

23. Anuar NF, Wahab RA, Huyop F, Amran SI, Hamid AA, Halim KB. Molecular docking and molecular dynamics simulations of a mutant Acinetobacter haemolyticus alkaline-stable lipase against tributyrin. J Biomol Struct Dyn. 2021;39(6):2079-91. doi: 10.1080/07391102.2020.1743364, PMID 32174260.

24. Bhowmik R, Nath R, Sharma S, Roy R, Biswas R. High-throughput screening and dynamic studies of selected compounds against SARS-CoV-2. Int J App Pharm. 2022;14(1):251-60. doi: 10.22159/ijap.2022v14i1.43105.

25. Kumari M, Singh R, Subbarao N. Exploring the interaction mechanism between potential inhibitor and multi-target Mur enzymes of mycobacterium tuberculosis using molecular docking, molecular dynamics simulation, principal component analysis, free energy landscape, dynamic cross-correlation matrices, vector movements, and binding free energy calculation. J Biomol Struct Dyn. 2022;40(24):13497-526. doi: 10.1080/07391102.2021.1989040, PMID 34662260.

26. Rose DR, Chaudet MM, Jones K. Structural studies of the intestinal α-glucosidases, maltase-glucoamylase and sucrase-isomaltase. J Pediatr Gastroenterol Nutr. 2018;66Suppl 3:S11-3. doi: 10.1097/MPG.0000000000001953, PMID 29762369.

27. Tannous S, Stellbrinck T, Hoter A, Naim HY. Interaction between the α-glucosidases, sucrase-isomaltase and maltase-glucoamylase, in human intestinal brush border membranes and its potential impact on disaccharide digestion. Front Mol Biosci. 2023;10:1160860. doi: 10.3389/fmolb.2023.1160860, PMID 36968271, PMCID PMC10030609.

28. Kaur N, Kumar V, Nayak SK, Wadhwa P, Kaur P, Sahu SK. Alpha-amylase as molecular target for treatment of diabetes mellitus: A comprehensive review. Chem Biol Drug Des. 2021;98(4):539-60. doi: 10.1111/cbdd.13909, PMID 34173346.

29. Guan S, Han X, Li Z, Xu X, Cui Y, Chen Z et al. Exploration of the interactions between maltase–glucoamylase and its potential peptide inhibitors by molecular dynamics simulation. Catalysts. 2022;12(5):522. doi: 10.3390/catal12050522.

30. Zhang S, Wang Y, Han L, Fu X, Wang S, Li W. Targeting N-terminal human maltase-glucoamylase to unravel possible inhibitors using molecular docking, molecular dynamics simulations, and adaptive steered molecular dynamics simulations. Front Chem. 2021;9:711242. doi: 10.3389/fchem.2021.711242, PMID 34527658, PMCID PMC8435576.

31. Oh TJ, Choi SH. Response: efficacy and safety of voglibose plus metformin in patients with type 2 diabetes mellitus: a randomized controlled trial (diabetes metab J 2019;43;276-86. Diabetes Metab J. 2019;43(4):547-8. doi: 10.4093/dmj.2019.0148, PMID 31441250, PMCID PMC6712230.

32. Holman RR, Coleman RL, Chan JC, Chiasson JL, Feng H, Ge J. Effects of acarbose on cardiovascular and diabetes outcomes in patients with coronary heart disease and impaired glucose tolerance (ACE): a randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 2017;5(11):877-86. doi: 10.1016/S2213-8587(17)30309-1, PMID 28917545.

33. Liu Z, Zhao X, Sun W, Wang Y, Liu S, Kang L. Metformin combined with acarbose vs. single medicine in the treatment of type 2 diabetes: a meta-analysis. Exp Ther Med. 2017;13(6):3137-45. doi: 10.3892/etm.2017.4333, PMID 28588669, PMCID PMC5450786.

34. Dash RP, Babu RJ, Srinivas NR. Reappraisal and perspectives of clinical drug-drug interaction potential of α-glucosidase inhibitors such as acarbose, voglibose and miglitol in the treatment of type 2 diabetes mellitus. Xenobiotica. 2018;48(1):89-108. doi: 10.1080/00498254.2016.1275063, PMID 28010166.

Published

07-11-2025

How to Cite

VISHWANADHAM RAO, V., NARAYANAPPA SHANTI, K., & MANJEGOWDA, D. S. (2025). MOLECULAR DOCKING AND GRAPHICAL TRAJECTORY ANALYSIS OF CINNAMOMUM ZEYLANICUM COMPOUNDS FOR TARGETING HUMAN MALTASE-GLUCOAMYLASE IN DIABETES MANAGEMENT. International Journal of Applied Pharmaceutics, 17(6), 367–380. https://doi.org/10.22159/ijap.2025v17i6.55175

Issue

Section

Original Article(s)

Similar Articles

<< < 5 6 7 8 9 > >> 

You may also start an advanced similarity search for this article.