GREEN SYNTHESIS OF ZINC OXIDE NANOPARTICLES OF TRADESCANTIA SPATHACEA PLANT

Authors

DOI:

https://doi.org/10.22159/ijap.2026v18i1.55297

Keywords:

Tradescantia spathacea, Acute toxicity, Methanolic extract, Zn O nanoparticles, Hypoglycemic effect, Toxicological profile, Histopathological analyses

Abstract

Objective: In this investigation, we worked to determine whenever herbal nanoparticle formulations made from methanolic extracts of Tradescantia spathacea (T.S.) leaves exhibited any acute toxicity.

 

Methods: Male and female mice (n = 5 per group per sex) received dosages of 500, 1000, 2000, 3000, and 5000 mg/kg of T.S. methanolic extract containing zinc oxide (ZnO) nanoparticles. Over the course of 14 days, the mice were studied for changes in behavior and weight, as well as death. Vital organs were also subjected to histological examination.

 

Results: Toxicological symptoms and a 10-30% death rate were caused by doses of 3,000 mg/kg and 5,000 mg/kg, respectively. No side effects were seen at dosages of 1000 mg/kg and 2000 mg/kg. No notable morphological alterations in critical organs were detected during histopathological investigation. The lipid profiles and hypoglycaemic effects were improved by all dosages that were evaluated.

Conclusion: According to the results, therapeutic dosages of T.S. ZnO nanoparticles are safe, even at an LD50 greater than 5000 mg/kg. Traditional therapeutic uses of Tradescantia spathacea are now well-supported by the results. Histopathological analyses revealed no significant morphological changes in vital organs.

References

[1]. Al-darwesh MY, Ibrahim SS, Mohammed MA. A review on plant extract mediated green synthesis of zinc oxide nanoparticles and their biomedical applications. Results Chem. 2024;7(February):101368. doi.org/10.1016/j.rechem.2024.101368.

[2]. Joesna G, Alodhayb A, Sasikumar P, Sree TL, Ferin RZ, Sankar D, et al. Bio- synthesis zinc oxide nanoparticle: Azadirachta indica and Phyllanthus acidus mediated green approach for enhanced biological efficacy. Chem Phys Impact. 2025;10, 100821. doi.org/10.1016/j.chphi.2025.100821

[3]. Hamed R, Obeid RZ, Abu-Huwaij R. Plant mediated-green synthesis of zinc oxide nanoparticles: An insight into biomedical applications. Nanotechnology Reviews 2023; 12: 20230112. https://doi.org/10.1515/ntrev-2023-0112

[4]. Abdelbaky AS, Abd El-Mageed TA, Babalghith AO, Selim S, Mohamed AMHA. Green Synthesis and Characterization of ZnO Nanoparticles Using Pelargonium odoratissimum (L.) Aqueous Leaf Extract and Their Antioxidant, Antibacterial and Anti-inflammatory Activities. Antioxidants. 2022;11(8). doi: 10.3390/antiox11081444.

[5]. Arumugam A, Karthikeyan C, Haja Hameed AS, Gopinath K, Gowri S, Karthika V. Synthesis of cerium oxide nanoparticles using Gloriosa superba L. leaf extract and their structural, optical and antibacterial properties. Mater Sci Eng C. 2015; 49:408–15. http://dx.doi.org/10.1016/j.msec.2015.01.042

[6]. Zavitri NG, Syahbaniati AP, Primastuti RK, Putri RM, Damayanti S, Wibowo I. Toxicity evaluation of zinc oxide nanoparticles green synthesized using papaya extract in zebrafish. Biomed Reports. 2023;19(6):1–11. doi: 10.3892/br.2023.1678.

[7]. Fernandes CA, Jesudoss M N, Nizam A, Krishna SBN, Lakshmaiah VV. Biogenic Synthesis of Zinc Oxide Nanoparticles Mediated by the Extract of Terminalia catappa Fruit Pericarp and Its Multifaceted Applications. ACS Omega. 2023;8(42):39315–28. doi: 10.1021/acsomega.3c04857.

[8]. Elumalai K, Velmurugan S, Ravi S, Kathiravan V, Ashokkumar S. Bio-fabrication of zinc oxide nanoparticles using leaf extract of curry leaf (Murraya koenigii) and its antimicrobial activities. Mater Sci Semicond Process. 2015; 34:365–72. http://dx.doi.org/10.1016/j.mssp.2015.01.048

[9]. Bhuyan T, Mishra K, Khanuja M, Prasad R, Varma A. Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Mater Sci Semicond Process. 2015; 32:55–61. http://dx.doi.org/10.1016/j.mssp.2014.12.053

[10]. Murali M, Gowtham HG, Shilpa N, Singh SB, Aiyaz M, Sayyed RZ, et al. Zinc oxide nanoparticles prepared through microbial mediated synthesis for therapeutic applications: a possible alternative for plants. Front Microbiol. 2023;14(September):1–20. doi: 10.3389/fmicb.2023.1227951.

[11]. Maher S, Nisar S, Aslam SM, Saleem F, Behlil F, Imran M, et al. Synthesis and Characterization of ZnO Nanoparticles Derived from Biomass (Sisymbrium Irio) and Assessment of Potential Anticancer Activity. ACS Omega. 2023;8(18):15920–31. doi: 10.1021/acsomega.2c07621

[12]. Rajendran NK, George BP, Houreld NN, Abrahamse H. Synthesis of zinc oxide nanoparticles using rubus fairholmianus root extract and their activity against pathogenic bacteria. Molecules. 2021;26(10). https://doi.org/10.3390/ molecules26103029.

[13]. El-Beltagi HS, Rageb M, El-Saber MM, El-Masry RA, Ramadan KMA, Kandeel M, et al. green synthesis, characterization, and hepatoprotective effect of zinc oxide nanoparticles from Moringa oleifera leaves in CCl4-treated albino rats. Heliyon. 2024;10(9): e30627. https://doi.org/10.1016/j.heliyon.2024.e30627.

[14]. Rihab H, Aicha Maria EK, Mimouna I K. Green synthesis of zinc oxide nanoparticles using pistacia lentiscus L. leaf extract and evaluating their antioxydant and antibacterial properties. Nano Biomedicine and Engineering, 2024, 16(2): 232−247.doi: 10.26599/NBE.2024.9290056

[15]. Carp O, Alina Tirsoaga, Jurca B, Ene R, Somacescu S, Ianculescu A. Biopolymer starch mediated synthetic route of multi-spheres and donut ZnO structures. Carbohydr Polym [Internet]. 2015; 115:285–93. Available from: http://dx.doi.org/10.1016/j.carbpol.2014.08.061.

[16]. Idaka E, Ogawa T, Kondo T, Goto T. Isolation of Highly Acylated Anthocyanins from Commelinaceae Plants, Zebrina pendula, Rhoeo spathacea and Setcreasea purpurea. Agric Biol Chem. 1987;51(8):2215–20. doi: 10.1080/00021369.1987.10868340.

[17]. González-Avila M, Arriaga-Alba M, De La Garza M, Del Carmen Hernández Pretelín M, Domínguez-Ortíz MA, Fattel-Fazenda S, et al. Antigenotoxic, antimutagenic and ROS scavenging activities of a Rhoeo discolor ethanolic crude extract. Toxicol Vitr. 2003;17(1):77–83. doi: 10.1016/s0887-2333(02)00120-0.

[18]. Andrade-Cetto A, Cruz EC, Cabello-Hernández CA, Cárdenas-Vázquez R. Hypoglycemic Activity of Medicinal Plants Used among the Cakchiquels in Guatemala for the Treatment of Type 2 Diabetes. Evidence-based Complement Altern Med. 2019. doi: 10.1155/2019/2168603.

[19]. Roys R.,1931. The Ethno -Botany of the Maya. The Tulane University of Louisiana,

New Orleans, USA, P.359.

[20]. Luciano-Montalvo C, Boulogne I, Gavillán-Suárez J. A screening for antimicrobial activities of Caribbean herbal remedies. BMC Complement Altern Med. 2013; 13:0–9. http://www.biomedcentral.com/1472-6882/13/126.

[21]. Guzmán SL, Reyes R, Bonilla H. Medicinal plants for the treatment of "nervios", anxiety, and depression in Mexican Traditional Medicine. Rev Bras Farmacogn. 2014; 24:591–608. http://dx.doi.org/10.1016/j.bjp.2014.10.007.

[22]. Moe S, Naing K, Htay M. Herbal Medicines Used by Tuberculosis Patients in Myanmar. European J Med Plants. 2018;22(1):1–10. doi: 10.9734/EJMP/2018/3734.

[23]. Rosales-Reyes T, de la Garza M, Arias-Castro C, Rodríguez-Mendiola M, Fattel-Fazenda S, Arce-Popoca E, et al. Aqueous crude extract of Rhoeo discolor, a Mexican medicinal plant, decreases the formation of liver preneoplastic foci in rats. J Ethnopharmacol. 2007;115(3):381–6. doi: 10.1016/j.jep.2007.10.022.Epub 2007 Oct 23.

[24]. Wei L, Zhang W, Yin L, Yan F, Xu Y, Chen F. Extraction optimization of total triterpenoids from jatropha curcas leaves using response surface methodology and evaluations of their antimicrobial and antioxidant capacities. Electron J Biotechnol. 2015;18(2):88–95. doi.org/10.1016/j.ejbt.2014.12.005.

[25]. Lamari FN, Papasotiropoulos V, Tsiris D, Bariamis SE, Sotirakis K, Pitsi E, et al.

Phytochemical and genetic Characterization of styles of wild Crocus species from the

island of Crete, Greece and comparison to those of cultivated C. sativus. Fitoterapia.

2018; 130:225–33. doi.org/10.1016/j.fitote.2018.09.003.

[26]. Jayappa MD, Ramaiah CK, Kumar MAP, Suresh D, Prabhu A, Devasya RP, et al. green synthesis of zinc oxide nanoparticles from the leaf, stem and in vitro grown callus of Mussaenda frondosa L.: characterization and their applications. Appl Nanosci. 2020;10(8):3057–74. https://doi.org/10.1007/s13204-020-01382-2.

[27]. Sundrarajan M, Ambika S, Bharathi K. Plant-extract mediated synthesis of ZnO nanoparticles using Pongamia pinnata and their activity against pathogenic bacteria. Adv Powder Technol. 2015;26(5):1294–9. http://dx.doi.org/10.1016/j.apt.2015.07.001.

[28]. Lakshmi Pravallika P, Krishna Mohan G, Venkateswara Rao K, Shanker K. Biosynthesis, Characterization and acute oral toxicity studies of synthesized iron oxide nanoparticles using ethanolic extract of Centella asiatica plant. Mater Lett 2019; 236:256–9. https://doi.org/10.1016/j.matlet.2018.10.037.

[29]. Kavitha K, Sujatha K, Manoharan S. Development, Characterization and Antidiabetic Potentials of Nilgirianthusciliatus Nees Derived Nanoparticles. J Nanomedine Biotherapeutic Discov. 2017;07(02). doi.org/10.4172/2155-983X.1000152.

[30]. Xu R. Progress in nanoparticles characterization: Sizing and zeta potential measurement. Particuology. 2008;6(2):112–5. doi: 10.1016/j.partic.2007.12.002.

[31]. Mohd Yusof H, Mohamad R, Zaidan UH, Abdul Rahman NA. Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: A review. J Anim Sci Biotechnol. 2019;10(1):1–22. doi.org/10.1186/s40104-019-0368-z.

[32]. Vijayakumar S, Krishnakumar C, Arulmozhi P, Mahadevan S, Parameswari N. Biosynthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from leaf extract of Glycosmis pentaphylla (Retz.) DC. Microb Pathog. 2018;116: 44–8. https://doi.org/10.1016/j.micpath.2018.01.003

[33]. Matinise N, Fuku XG, Kaviyarasu K, Mayedwa N, Maaza M. ZnO nanoparticles via Moringa oleifera green synthesis: Physical properties & mechanism of formation. Appl Surf Sci. 2017; 406:339–47. http://dx.doi.org/10.1016/j.apsusc.2017.01.219

[34]. Ashwini J, Aswathy T.R., Achuthsankar S. N. Green synthesis and characterization of zinc oxide nanoparticles using Cayratia pedata leaf extract. Biochemistry and Biophysics Reports Volume 26, July 2021, 100995.doi: org/10.1016/j.bbrep.2021.100995.

[35]. Zaheer E, Hassan S, Shareef H, Naz A, Hassan A, Qadeer K. Scanning electron microscopy (SEM) and atomic absorption spectroscopic evaluation of Raphanus sativus L. Seeds grown in Pakistan. Pak J Pharm Sci. 2021;34(2):545–52.

[36]. Shaik B, Bhulakshmi P, Padma J G, and Muni K A., Green Synthesis of Zinc Oxide Nanoparticles Using Pterocarpus santalinus Leaf Extract: Antioxidant Potential and Antibacterial Efficacy Against Pseudomonas cichorii in Chrysanthemum. Current Trends in Biotechnology and Pharmacy 142 Vol. 19 (Supplementry Issue 1A), June 2025. doi.org/ 10.5530/ctbp.2025.2s.14.

[37]. Vijaya Kumar R LS, Kumar BR S. Acute and Repeated Oral Toxicity of Antidiabetic Polyherbal Formulation Flax Seed, Fenugreek and Jamun Seeds in Wistar Albino Rat. J Diabetes Metab. 2016;07(03). doi:10.4172/2155-6156.1000656.

[38]. Shaban. E.E, Ibrahim. K.S, El-Sayed. E.M, Abd El-Aziz M. E, Nasr. Soad M, Desouky. H.M, Elbakry. H.F. Evaluation of Acute Oral Toxicity of Zinc Oxide Nanoparticles in Rats. Egypt. J. Chem. 2021, Vol. 64, No. 8 pp. 4591 - 4600.

doi: 10.21608/EJCHEM.2021.80810.4003

[39]. Ali MD, Negin H, Mohaddeseh G, Ali S, Alireza Y & Hossein D, Green synthesis and toxicological evaluation of zinc oxide nanoparticles utilizing Punica granatum fruit Peel extract: an ecofriendly approach. Sci Rep. 2025 Jul 1;15: 20853. doi: 10.1038/s41598-025-05544-6.

[40]. Shanker K, Mohan GK, Hussain M, Jayarambabu N, Pravallika PL. Green biosynthesis, Characterization, in vitro antidiabetic activity, and investigational acute toxicity studies of some herbal-mediated silver nanoparticles on animal models. Pharmacogn Mag. 2017;13(49):188–92. doi: 10.4103/0973-1296.197642.

[41]. Peddanna K, Saritha M, Rajasekhar A, Kameswara RB, Appa RC. Evaluation of biochemical mechanisms of anti-diabetic functions of Anisomeles malabarica. Biomedicine & Pharmacotherapy 112 (2019) 108598. https://doi.org/10.1016/j.biopha.2019.01.059.

[41]. Joel Juarros-Basterretxea, Gema Aonso-Diego, Álvaro Postigo, Pelayo Montes Álvarez,

Álvaro Menéndez-Aller, Eduardo García-Cueto. Post-Hoc Tests in One-Way ANOVA:

The Case for Normal Distribution. Methodology, 2024, Vol. 20(2), 84–99.

https://doi.org/10.5964/meth.11721

[42]. Houssein. A, Lan Zhou, Raymond J Carroll and Guoyao Wu, Rapid publication-ready

MS-Word tables for one-way ANOVA, Springer Plus 2014, 3:474.

http://www.springerplus.com/content/3/1/474.

[43]. Sankar. R, Manikandan. P, Malarvizhi. V, et al., green synthesis of colloidalcopper

oxide nanoparticles using Carica papaya and its application in photocatalytic dye

degradation, Spectrochim Acta - Part A Mol Biomol Spectrosc (2014).

doi.org/10.1016/j.saa.2013.12.020.

[44]. J. Ahn, J. Ko, S. Lee, J. Yu, Y. Kim, N.L. Jeon, Microfluidics in nanoparticle drug

delivery; From synthesis to pre-clinical screening, Adv Drug Deliv Rev. 128 (2018)

29–53. doi.org/10.1016/j.addr.2018.04.001.

[45]. Santhoshkumar. J, Kumar. S.V, Rajeshkumar. S, Synthesis of zinc oxide nanoparticles

using plant leaf extract against urinary tract infection pathogen, Resour. Technol. (2017)

1–7, https://doi.org/10.1016/j.reffit.2017.05.001.

[46]. Obeizi Z, Benbouzid H, Ouchenane S, Yılmaz D, Culha M, Bououdina M (2020)

Biosynthesis of Zinc oxide nanoparticles from essential oil of Eucalyptus globulus with

antimicrobial and anti-biofilm activities. Mater Today Commun 25:101553.

[47]. H. Agarwal, et al., Mechanistic study on antibacterial action of zinc oxide nanoparticles

synthesized using green route, Chem. Biol. Interact. 286 (2018) 60–70.

[48]. Jayarambabu. N, Venkateswara Rao. K and Rajendar.V, Biogenic synthesis,

characterization, acute oral toxicity studies of synthesized Ag and ZnO nanoparticles

using aqueous extract of Lawsonia inermis. Materials Letters, Volume 211, 15 January

2018, 43-47. doi.org/10.1016/j.matlet.2017.09.082.

[49]. Pulipaka S, Suttee A, Kumar MR and Kasarla R., Exploration of In-vitro Antidiabetic

Activity of ZnO NPs and Ag NPs Synthesized using Methanolic Extracts of Alpinia

mutica and Tradescantia spathaeca Leaves. Int. J. Pharm. Qual. Assur. 2023;14(3):464-

469. doi: 10.25258/ijpqa.14.3.01.

Published

27-10-2025

How to Cite

PULIPAKA, S., SUTTEE, A., VANI, R., & JYOTHI, V. (2025). GREEN SYNTHESIS OF ZINC OXIDE NANOPARTICLES OF TRADESCANTIA SPATHACEA PLANT. International Journal of Applied Pharmaceutics, 18(1). https://doi.org/10.22159/ijap.2026v18i1.55297

Issue

Section

Original Article(s)

Similar Articles

<< < 118 119 120 121 > >> 

You may also start an advanced similarity search for this article.