SYNTHESIS AND OPTIMIZATION OF SOLANUM TORVUM EXTRACT LOADED MESOPOROUS SILICA NANOPARTICLES

Authors

  • SWATI RAVINDRA BORSE Department of pharmaceutics, School of pharmaceutical sciences, Sandip University, Nashik, Maharashtra, India
  • SUNITA S. DEORE Department of pharmaceutics, School of pharmaceutical sciences, Sandip University, Nashik, Maharashtra, India https://orcid.org/0000-0001-7768-7355

DOI:

https://doi.org/10.22159/ijap.2026v18i1.55407

Keywords:

Mesoporous silica nanoparticles, Solanum torvum, Box-behnken design, Optimization, Sustained release, Stability

Abstract

Objectives: To develop and optimize Solanum torvum extract loaded mesoporous silica nanoparticles (MSNs) targeting methicillin-resistant Staphylococcus aureus (MRSA) and multidrug-resistant Escherichia coli with enhanced physicochemical properties and stability for antimicrobial resistance (AMR) applications.

Methods: Mesoporous silica nanoparticles were synthesized using a modified Stöber method. The formulation was optimized using Box-Behnken design with three critical factors: CTAB amount (0.25-1.00 g), TEOS volume (5.00-10.00 mL), and stirring speed (400-600 rpm), targeting minimal particle size and most negative zeta potential. The optimized formulation was characterized for particle size, zeta potential, loading efficiency, morphology (SEM), drug-excipient compatibility (FTIR, DSC), in vitro release profile, and accelerated stability.

Results: The 2FI model demonstrated excellent predictive capability for both responses (adjusted R²=0.8640 and 0.9508 for particle size and zeta potential, respectively). Formulation SF6 (CTAB: 1g, TEOS: 7.5mL, stirring speed: 400rpm) was identified as optimum, exhibiting spherical morphology with particle size of 110.8±2.5 nm, PDI of 0.182±0.011, zeta potential of -32.3±0.7 mV, and loading efficiency of 89.1±0.45%. The formulation showed biphasic sustained release (92.1% over 12 hours) and demonstrated moderate stability under accelerated conditions with gradual parameter changes (40°C/75%RH) for 6 months with minimal changes in critical parameters (5% increase in particle size, 4.2% decrease in drug content) and exhibited potent antimicrobial activity with MIC values of 8 μg/mL (MRSA) and 16 μg/mL (MDR E. coli)

Conclusion: The optimized Solanum torvum extract-loaded MSNs offer a promising nanodelivery system with enhanced stability and sustained release characteristics that could potentially improve bioavailability, reduce dosing frequency, and enhance patient compliance in clinical settings. The formulation's moderate stability profile, while improved compared to free extract, requires further optimization to address storage-related degradation in phytopharmaceutical development, positioning it for future translational studies toward clinical applications.

References

1. Gulzar M, Suleman M, Asif S, Fazil A, Ali H, Ahmad M. Antimicrobial resistance: a review of global challenges and collaborative solutions. Eur J Microbiol Infect Dis. 2025 Jan;44(1):1-15. doi: 10.5455/EJMID.20250411054148.

2. Alara JA, Alara OR. An overview of the global alarming increase of multiple drug resistant: a major challenge in clinical diagnosis. Infect Disord Drug Targets. 2024;24(1):26-42. doi: 10.2174/1871526523666230725103902.

3. Kim C, Holm M, Frost I, Hasso-Agopsowicz M, Abbas K. Global and regional burden of attributable and associated bacterial antimicrobial resistance avertable by vaccination: modelling study. BMJ Glob Health. 2023;8(1):e011341. doi: 10.1136/bmjgh-2022-011341.

4. Hussain A, Najeeb A, Ali SA. Antimicrobial resistance: a modern plague. In: Kannan H, Rodriguez RV, Rajaraman S, Pise AA, editors. Advances in medical technologies and clinical practice. Hershey (PA): IGI Global; 2024. p. 27-74. doi: 10.4018/979-8-3693-7550-1.ch002.

5. Alotaibi G. Prevalence, pandemic, preventions and policies to overcome antimicrobial resistance. Saudi J Biol Sci. 2024 Jul;31(7):104032. doi: 10.1016/j.sjbs.2024.104032.

6. Ogwu MC, Dunkwu-Okafor A, Omakor IA, Izah SC. Turkey berry (Solanum torvum Sw. [Solanaceae]): an overview of the phytochemical constituents, nutritional characteristics, and ethnomedicinal values for sustainability. In: Herbal medicine phytochemistry. Cham: Springer; 2024. p. 245-71. doi: 10.1007/978-3-031-43199-9_73.

7. Pandey G, Prajapati KK, Pandey R. Distribution, taxonomy and medicinal importance of Solanum torvum Sw.: importance of Solanum torvum Sw. PhytoTalks. 2024;1(2):95-105. doi: 10.21276/pt.2024.1.2.2.

8. Ningsih WM, Zulharmita Z, Asra R, Chandra B. Review: the chemical compounds of turkey berry (Solanum torvum Swartz) plants that are efficacious as medicine. IJPSM. 2021;6(8):173-81. doi: 10.47760/ijpsm.2021.v06i08.013.

9. Maloth GS, Marka R, Nanna RS. A review on in vitro regeneration of ethnomedicinal plant turkey berry (Solanum torvum Swartz). Eur J Biol Biotechnol. 2023;4(3):1-11. doi: 10.24018/ejbio.2023.4.3.443.

10. Senizza B, Rocchetti G, Sinan KI, Zengin G, Mahomoodally MF, Glamocilja J, et al. The phenolic and alkaloid profiles of Solanum erianthum and Solanum torvum modulated their biological properties. Food Biosci. 2021 Jun;41:100974. doi: 10.1016/j.fbio.2021.100974.

11. Li Z, Xu K, Qin L, Zhao D, Yang N, Wang D, et al. Hollow nanomaterials in advanced drug delivery systems: from single- to multiple shells. Adv Mater. 2023 Apr;35(17):e2203890. doi: 10.1002/adma.202203890.

12. Nair A, Chandrashekhar HR, Day CM, Garg S, Nayak Y, Shenoy PA, et al. Polymeric functionalization of mesoporous silica nanoparticles: biomedical insights. Int J Pharm. 2024 Jul;660:124314. doi: 10.1016/j.ijpharm.2024.124314.

13. Singh R, Prasad A, Kumar B, Kumari S, Sahu RK, Hedau ST. Potential of dual drug delivery systems: MOF as hybrid nanocarrier for dual drug delivery in cancer treatment. ChemistrySelect. 2022;7(30):e202201288. doi: 10.1002/slct.202201288.

14. Ahmadi F, Sodagar-Taleghani A, Ebrahimnejad P, Pouya Hadipour Moghaddam S, Ebrahimnejad F, Asare-Addo K, et al. A review on the latest developments of mesoporous silica nanoparticles as a promising platform for diagnosis and treatment of cancer. Int J Pharm. 2022 Sep;625:122099. doi: 10.1016/j.ijpharm.2022.122099.

15. Malekmohammadi S, Mohammed RUR, Samadian H, Zarebkohan A, García-Fernández A, Kokil GR, et al. Nonordered dendritic mesoporous silica nanoparticles as promising platforms for advanced methods of diagnosis and therapies. Mater Today Chem. 2022 Oct;26:101144. doi: 10.1016/j.mtchem.2022.101144.

16. Alzeer HS, Alzaid SF, Aldawsari FS, Alshehri YM. Development and validation of a simple method for the determination of triamcinolone acetonide in nasal spray. Saudi Pharm J. 2023 Nov;31(11):101793. doi: 10.1016/j.jsps.2023.101793.

17. Kowtharapu LP, Katari NK, Sandoval CA, Muchakayala SK, Rekulapally VK. Green liquid chromatography method for the determination of related substances present in olopatadine HCl nasal spray formulation, robustness by design expert. J AOAC Int. 2022 Oct;105(5):1247-57. doi: 10.1093/jaoacint/qsac072.

18. Delbeck S, Heise HM. Systematic stability testing of insulins as representative biopharmaceuticals using ATR FTIR-spectroscopy with focus on quality assurance. J Biomed Opt. 2021 Apr;26(4):043007. doi: 10.1117/1.JBO.26.4.043007.

19. Skvorčinskienė R, Kiminaitė I, Vorotinskienė L, Jančauskas A, Paulauskas R. Complex study of bioplastics: degradation in soil and characterization by FTIR-ATR and FTIR-TGA methods. Energy. 2023 Jun;274:127320. doi: 10.1016/j.energy.2023.127320.

20. Mandal S, Mohalik NK, Ray SK, Khan AM, Mishra D, Pandey JK. A comparative kinetic study between TGA & DSC techniques using model-free and model-based analyses to assess spontaneous combustion propensity of Indian coals. Process Saf Environ Prot. 2022 Mar;159:1113-26. doi: 10.1016/j.psep.2022.01.045.

21. Vu TH, Pham AT, Nguyen VQ, Nguyen AD, Nguyen Tran TN, Nguyen Thi MH, et al. Growth and thermal stability studies of layered GaTe single crystals in inert atmospheres. J Solid State Chem. 2021 Apr;296:121996. doi: 10.1016/j.jssc.2021.121996.

22. Rahimpour E, Moradi M, Sheikhi-Sovari A, Rezaei H, Rezaei H, Jouyban-Gharamaleki V, et al. Comparative drug solubility studies using shake-flask versus a laser-based robotic method. AAPS PharmSciTech. 2023 Oct;24(8):207. doi: 10.1208/s12249-023-02667-9.

23. Kim MK, Ki DH, Na YG, Lee HS, Baek JS, Lee JY, et al. Optimization of mesoporous silica nanoparticles through statistical design of experiment and the application for the anticancer drug. Pharmaceutics. 2021 Feb;13(2):184. doi: 10.3390/pharmaceutics13020184.

24. Harun SN, Ahmad H, Lim HN, Chia SL, Gill MR. Synthesis and optimization of mesoporous silica nanoparticles for ruthenium polypyridyl drug delivery. Pharmaceutics. 2021 Feb;13(2):150. doi: 10.3390/pharmaceutics13020150.

25. Stöber W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci. 1968 Jan;26(1):62-9. doi: 10.1016/0021-9797(68)90272-5.

26. Musallam AA, Mahdy MA, Elnahas HM, Aldeeb RA. Optimization of mirtazapine loaded into mesoporous silica nanostructures via Box-Behnken design: in-vitro characterization and in-vivo assessment. Drug Deliv. 2022 Dec;29(1):1582-94. doi: 10.1080/10717544.2022.2075985.

27. Ghaferi M, Koohi Moftakhari Esfahani M, Raza A, Al Harthi S, Ebrahimi Shahmabadi H, Alavi SE. Mesoporous silica nanoparticles: synthesis methods and their therapeutic use-recent advances. J Drug Target. 2021 Feb;29(2):131-54. doi: 10.1080/1061186X.2020.1812614.

28. Wang Q, Li Q, Wang L, Yang L, Hu Z, Wang J, et al. Optimizing the size of mesoporous silica nano-delivery system enhances the absorption, transport, and retention of pesticides in tea plants. Ind Crops Prod. 2025 Jan;227:120789. doi: 10.1016/j.indcrop.2025.120789.

29. Gao YF, Zou R, Chen GF, Liu BM, Zhang Y, Jiao J, et al. Large-pore mesoporous-silica-assisted synthesis of high-performance ZnGa2O4:Cr3+/Sn4+@MSNs multifunctional nanoplatform with optimized optical probe mass ratio and superior residual pore volume for improved bioimaging and drug delivery. Chem Eng J. 2021 Sep;420:130021. doi: 10.1016/j.cej.2021.130021.

30. Chen G, Wen S, Ma J, Sun Z, Lin C, Yue Z, et al. Optimization of intrinsic self-healing silicone coatings by benzotriazole loaded mesoporous silica. Surf Coat Technol. 2021 Aug;421:127388. doi: 10.1016/j.surfcoat.2021.127388.

31. Dong S, Feng Z, Ma R, Zhang T, Jiang J, Li Y, et al. Engineered design of a mesoporous silica nanoparticle-based nanocarrier for efficient mRNA delivery in vivo. Nano Lett. 2023 Mar;23(6):2137-47. doi: 10.1021/acs.nanolett.2c04486.

32. Shakeran Z, Keyhanfar M, Varshosaz J, Sutherland DS. Biodegradable nanocarriers based on chitosan-modified mesoporous silica nanoparticles for delivery of methotrexate for application in breast cancer treatment. Mater Sci Eng C Mater Biol Appl. 2021 Jan;118:111526. doi: 10.1016/j.msec.2020.111526.

33. González-González O, Ramirez IO, Ramirez BI, O'Connell P, Ballesteros MP, Torrado JJ, et al. Drug stability: ICH versus accelerated predictive stability studies. Pharmaceutics. 2022 Nov;14(11):2324. doi: 10.3390/pharmaceutics14112324.

34. Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal. 2016 Apr;6(2):71-9. doi: 10.1016/j.jpha.2015.11.005, PMID 26790027.

35. Loo YY, Rukayadi Y, Nor-Khaizura MAR, Kuan CH, Chieng BW, Nishibuchi M, et al. In vitro antimicrobial activity of green synthesized silver nanoparticles against selected gram-negative foodborne pathogens. Front Microbiol. 2018 Jul;9:1555. doi: 10.3389/fmicb.2018.01555, PMID 30061871.

36. Beitzinger B, Gerbl F, Vomhof T, Schmid R, Noschka R, Rodriguez A, et al. Delivery by dendritic mesoporous silica nanoparticles enhances the antimicrobial activity of a napsin-derived peptide against intracellular Mycobacterium tuberculosis. Adv Healthc Mater. 2021 Jun;10(11):e2100453. doi: 10.1002/adhm.202100453.

37. Pota G, Sapienza Salerno A, Costantini A, Silvestri B, Passaro J, Califano V. Co-immobilization of cellulase and β-glucosidase into mesoporous silica nanoparticles for the hydrolysis of cellulose extracted from Eriobotrya japonica leaves. Langmuir. 2022 May;38(18):5481-93. doi: 10.1021/acs.langmuir.2c00053.

38. Pavlos K. Development of stimuli-responsive mesoporous silica nanoparticles for targeted cancer drug delivery: synthesis, characterization, and ion incorporation. Biosens Nanotheranostics. 2022;1(1):1-9. doi: 10.25163/biosensors.119852.

39. Lin L, Peng S, Chen X, Li C, Cui H. Silica nanoparticles loaded with caffeic acid to optimize the performance of cassava starch/sodium carboxymethyl cellulose film for meat packaging. Int J Biol Macromol. 2023 Jul;241:124591. doi: 10.1016/j.ijbiomac.2023.124591.

40. García A, González B, Harvey C, Izquierdo-Barba I, Vallet-Regí M. Effective reduction of biofilm through photothermal therapy by gold core@shell based mesoporous silica nanoparticles. Microporous Mesoporous Mater. 2021 Nov;328:111489. doi: 10.1016/j.micromeso.2021.111489.

41. Mohan S, Thankaswamy J. Synthesis and characterization of piperine-modified mesoporous silica nanoparticles for biomedical applications. Biotechnol Appl Biochem. 2025 Feb;72(2):402-14. doi: 10.1002/bab.2672.

42. Song K, Tang Z, Song Z, Meng S, Yang X, Guo H, et al. Hyaluronic acid-functionalized mesoporous silica nanoparticles loading simvastatin for targeted therapy of atherosclerosis. Pharmaceutics. 2022 Jun;14(6):1265. doi: 10.3390/pharmaceutics14061265.

43. Liu C, Jiang F, Xing Z, Fan L, Li Y, Wang S, et al. Efficient delivery of curcumin by alginate oligosaccharide coated aminated mesoporous silica nanoparticles and in vitro anticancer activity against colon cancer cells. Pharmaceutics. 2022 Jun;14(6):1166. doi: 10.3390/pharmaceutics14061166.

44. Feng J, Yang J, Shen Y, Deng W, Chen W, Ma Y, et al. Mesoporous silica nanoparticles prepared via a one-pot method for controlled release of abamectin: properties and applications. Microporous Mesoporous Mater. 2021 Feb;311:110688. doi: 10.1016/j.micromeso.2020.110688.

45. Zhao H, Guo M, Li F, Zhou Y, Zhu G, Liu Y, et al. Fabrication of gallic acid electrochemical sensor based on interconnected Super-P carbon black@mesoporous silica nanocomposite modified glassy carbon electrode. J Mater Res Technol. 2023 May;24:2100-12. doi: 10.1016/j.jmrt.2023.03.129.

46. Díaz-García D, Ferrer-Donato Á, Méndez-Arriaga JM, Cabrera-Pinto M, Díaz-Sánchez M, Prashar S, et al. Design of mesoporous silica nanoparticles for the treatment of amyotrophic lateral sclerosis (ALS) with a therapeutic cocktail based on leptin and pioglitazone. ACS Biomater Sci Eng. 2022 Nov;8(11):4838-49. doi: 10.1021/acsbiomaterials.2c00865.

47. Guo X, Qiao X, Li X, Zhou W, Liu C, Yu F, et al. Lactoferrin-modified organic-inorganic hybrid mesoporous silica for co-delivery of levodopa and curcumin in the synergistic treatment of Parkinson's disease. Phytomedicine. 2025 Jan;140:156547. doi: 10.1016/j.phymed.2025.156547.

48. Ahmed J, Faisal M, Harraz FA, Jalalah M, Alsareii SA. Development of an amperometric biosensor for dopamine using novel mesoporous silicon nanoparticles fabricated via a facile stain etching approach. Physica E Low Dimens Syst Nanostruct. 2022 Jan;135:114952. doi: 10.1016/j.physe.2021.114952.

49. Du Q, Liu Q. ROS-responsive hollow mesoporous silica nanoparticles loaded with glabridin for anti-pigmentation properties. Microporous Mesoporous Mater. 2021 Nov;327:111429. doi: 10.1016/j.micromeso.2021.111429.

50. Nasresfahani Z, Kassaee MZ. Bimetallic Ni/Cu mesoporous silica nanoparticles as an efficient and reusable catalyst for the Sonogashira cross-coupling reactions. J Organomet Chem. 2021 May;937:121703. doi: 10.1016/j.jorganchem.2021.121703.

51. Aati S, Aneja S, Kassar M, Leung R, Nguyen A, Tran S, et al. Silver-loaded mesoporous silica nanoparticles enhanced the mechanical and antimicrobial properties of 3D printed denture base resin. J Mech Behav Biomed Mater. 2022 Oct;134:105421. doi: 10.1016/j.jmbbm.2022.105421.

52. Rizzi F, Castaldo R, Latronico T, Lasala P, Gentile G, Lavorgna M, et al. High surface area mesoporous silica nanoparticles with tunable size in the sub-micrometer regime: insights on the size and porosity control mechanisms. Molecules. 2021 Jul;26(14):4247. doi: 10.3390/molecules26144247.

53. Gisbert-Garzarán M, Vallet-Regí M. Redox-responsive mesoporous silica nanoparticles for cancer treatment: recent updates. Nanomaterials (Basel). 2021 Sep;11(9):2222. doi: 10.3390/nano11092222.

Published

11-11-2025

How to Cite

BORSE, S. R., & DEORE, S. S. (2025). SYNTHESIS AND OPTIMIZATION OF SOLANUM TORVUM EXTRACT LOADED MESOPOROUS SILICA NANOPARTICLES. International Journal of Applied Pharmaceutics, 18(1). https://doi.org/10.22159/ijap.2026v18i1.55407

Issue

Section

Original Article(s)

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.