NEUROPROTECTIVE EFFECTS OF DONEPEZIL AND FLUOXETINE VIA GSK-3 PATHWAY IN A TRANSGENIC DROSOPHILA MODEL OF ALZHEIMER'S DISEASE: NEUROPSYCHIATRIC AND BEHAVIOURAL ANALYSIS

Authors

  • PRIYANKA LG Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysore-570015, India
  • BHARAT B. J. Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysore-570015, India https://orcid.org/0009-0004-8455-7419
  • K. L. KRISHNA Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysore-570015, India

DOI:

https://doi.org/10.22159/ijap.2025v17i6.55475

Keywords:

Alzheimer’s disease, Drosophila melanogaster, Donepezil, Fluoxetine, GSK-3 signalling, Neuroinflammation

Abstract

Objective: This study investigates the neuroprotective effects of Donepezil and Fluoxetine in a transgenic Drosophila melanogaster model of AD, with a specific focus on modulation of the GSK-3 signalling pathway.

Methods: Transgenic Drosophila flies expressing the UAS-ELAV-GAL4 system were divided into four groups: (1) Normal, (2) Disease Control, (3) Donepezil 100 µM (DPZ), and (4) Fluoxetine 10 µM (FLX), treated for 21 d. Behavioural assays (negative geotaxis, open field) were conducted to assess locomotor function. Biochemical analyses, including oxidative stress markers (CAT, MDA, GSH) and neurotransmitters (dopamine, serotonin, acetylcholine), were measured. Immunohistochemistry was used to qualitatively assess the expression of Aβ, GSK-3, and neuroinflammatory cytokines (IL-6, IL-1β, TNF-α) in fly brains.

Results: Transgenic Drosophila melanogaster expressing AD pathology exhibited elevated levels of oxidative stress markers, neurotransmitter deficits, and marked neuroinflammation. Donepezil and Fluoxetine significantly (p≤0.05) reduced MDA levels and restored CAT and GSH levels, indicating improved antioxidant defence. Both treatments also reversed reductions in dopamine, serotonin, and acetylcholine levels significantly (p≤0.05) when compared to the control group, suggesting neurochemical restoration. Immunohistochemistry revealed decreased Aβ, GSK-3, and pro-inflammatory cytokines (IL-6, IL-1β, TNF-α) following treatment, with Fluoxetine demonstrating comparatively greater modulation. Histological analysis confirmed improved neuronal integrity, particularly in the Fluoxetine-treated group, indicating superior neuroprotective efficacy.

Conclusion: Donepezil and Fluoxetine confer neuroprotection by enhancing locomotor function, reducing oxidative stress, restoring neurotransmitter balance, and attenuating neuroinflammation. Notably, Fluoxetine’s modulation of serotonergic-GSK-3 signalling suggests it may augment standard AD therapy by targeting both cholinergic and non-cholinergic mechanisms, offering a promising adjunctive strategy for disease management.

References

1. Huang YY, Gan YH, Yang L, Cheng W, Yu JT. Depression in Alzheimer’s disease: epidemiology mechanisms and treatment. Biol Psychiatry. 2024 Jun 1;95(11):992-1005. doi: 10.1016/j.biopsych.2023.10.008, PMID 37866486.

2. Lyketsos CG, Carrillo MC, Ryan JM, Khachaturian AS, Trzepacz P, Amatniek J. Neuropsychiatric symptoms in Alzheimer’s disease. Alzheimers Dement. 2011 Sep;7(5):532-9. doi: 10.1016/j.jalz.2011.05.2410, PMID 21889116, PMCID PMC3299979.

3. Botto R, Callai N, Cermelli A, Causarano L, Rainero I. Anxiety and depression in Alzheimer’s disease: a systematic review of pathogenetic mechanisms and relation to cognitive decline. Neurol Sci. 2022 Jul;43(7):4107-24. doi: 10.1007/s10072-022-06068-x, PMID 35461471, PMCID PMC9213384.

4. Kivipelto M, Mangialasche F, Ngandu T. Lifestyle interventions to prevent cognitive impairment dementia and Alzheimer disease. Nat Rev Neurol. 2018 Nov;14(11):653-66. doi: 10.1038/s41582-018-0070-3, PMID 30291317.

5. Hansson O. Biomarkers for neurodegenerative diseases. Nat Med. 2021 Jun;27(6):954-63. doi: 10.1038/s41591-021-01382-x, PMID 34083813.

6. Ossenkoppele R, Van Der Kant R, Hansson O. Tau biomarkers in Alzheimer’s disease: towards implementation in clinical practice and trials. Lancet Neurol. 2022 Aug;21(8):726-34. doi: 10.1016/S1474-4422(22)00168-5, PMID 35643092.

7. Bolus H, Crocker K, Boekhoff Falk G, Chtarbanova S. Modeling neurodegenerative disorders in Drosophila melanogaster. Int J Mol Sci. 2020 Apr 26;21(9):3055. doi: 10.3390/ijms21093055, PMID 32357532, PMCID PMC7246467.

8. Rubin GM. Drosophila melanogaster as an experimental organism. Science. 1988 Jun 10;240(4858):1453-9. doi: 10.1126/science.3131880, PMID 3131880.

9. Wojcik EJ. A mitotic role for GSK-3beta kinase in Drosophila. Cell Cycle. 2008 Dec;7(23):3699-708. doi: 10.4161/cc.7.23.7179, PMID 19029800, PMCID PMC6713227.

10. Nitta Y, Sugie A. Studies of neurodegenerative diseases using Drosophila and the development of novel approaches for their analysis. Fly (Austin). 2022 Dec;16(1):275-98. doi: 10.1080/19336934.2022.2087484, PMID 35765969, PMCID PMC9336468.

11. Wang L, Li J, Di LJ. Glycogen synthesis and beyond a comprehensive review of GSK3 as a key regulator of metabolic pathways and a therapeutic target for treating metabolic diseases. Med Res Rev. 2022 Mar;42(2):946-82. doi: 10.1002/med.21867, PMID 34729791, PMCID PMC9298385.

12. Hui J, Zhang J, Kim H, Tong C, Ying Q, Li Z. Fluoxetine regulates neurogenesis in vitro through modulation of GSK-3β/β-catenin signaling. Int J Neuropsychopharmacol. 2014 Dec 7;18(5):pyu099. doi: 10.1093/ijnp/pyu099, PMID 25522429, PMCID PMC4376550.

13. Sofola O, Kerr F, Rogers I, Killick R, Augustin H, Gandy C. Correction: inhibition of GSK-3 ameliorates Aβ pathology in an adult-onset drosophila model of Alzheimer’s disease. PLOS Genet. 2012;8(1)e1001087. doi: 10.1371/annotation/baa8a2a9-130b-4959-b6fb-6f786fd02826.

14. Prußing K, Voigt A, Schulz JB. Drosophila melanogaster as a model organism for Alzheimer’s disease. Mol Neurodegener. 2013 Nov 22;8:35. doi: 10.1186/1750-1326-8-35, PMID 24267573, PMCID PMC4222597.

15. Caravaca JM, Lei EP. Maintenance of a Drosophila melanogaster population cage. J Vis Exp. 2016 Mar 15;(109):53756. doi: 10.3791/53756, PMID 27023790, PMCID PMC4829027.

16. Cao W, Song L, Cheng J, Yi N, Cai L, Huang FD. An automated rapid iterative negative geotaxis assay for analyzing adult climbing behavior in a drosophila model of neurodegeneration. J Vis Exp. 2017 Sep 12;(127):56507. doi: 10.3791/56507, PMID 28931001, PMCID PMC5752225.

17. Soibam B, Mann M, Liu L, Tran J, Lobaina M, Kang YY. Open-field arena boundary is a primary object of exploration for Drosophila. Brain Behav. 2012 Mar;2(2):97-108. doi: 10.1002/brb3.36, PMID 22574279, PMCID PMC3345355.

18. Claiborne A. Handbook of methods for oxygen radical research. Florida CRC Press Boca Rat; 1985. p. 283-4.

19. Jollow DJ, Mitchell JR, Zampaglione N, Gillette JR. Bromobenzene induced liver necrosis. Protective role of glutathione and evidence for 3,4-bromobenzene oxide as the hepatotoxic metabolite. Pharmacology. 1974;11(3):151-69. doi: 10.1159/000136485, PMID 4831804.

20. Wright JR, Colby HD, Miles PR. Cytosolic factors which affect microsomal lipid peroxidation in lung and liver. Arch Biochem Biophys. 1981;206(2):296-304. doi: 10.1016/0003-9861(81)90095-3, PMID 7224639.

21. Nadiga AP, Krishna KL, Moin A, Abu Lila AS, Danish Rizvi SM, Sahyadri M. Exposure of zinc induced Parkinson’s disease-like non-motor and motor symptoms in relation to oxidative/nitrosative stress mediated neurodegeneration in the brain of Drosophila melanogaster. J Pharmacol Sci. 2025 Aug;158(4):303-9. doi: 10.1016/j.jphs.2025.05.010, PMID 40543992.

22. Goto S, Morigaki R, Okita S, Nagahiro S, Kaji R. Development of a highly sensitive immunohistochemical method to detect neurochemical molecules in formalin-fixed and paraffin embedded tissues from autopsied human brains. Front Neuroanat. 2015 Mar 3;9:22. doi: 10.3389/fnana.2015.00022, PMID 25784860, PMCID PMC4347496.

23. Kucherenko MM, Marrone AK, Rishko VM, Yatsenko AS, Klepzig A, Shcherbata HR. Paraffin embedded and frozen sections of Drosophila adult muscles. J Vis Exp. 2010 Dec 27;(46):2438. doi: 10.3791/2438, PMID 21206479, PMCID PMC3159657.

24. Perluigi M, Di Domenico F, Butterfield DA. Oxidative damage in neurodegeneration: roles in the pathogenesis and progression of Alzheimer disease. Physiol Rev. 2024 Jan 1;104(1):103-97. doi: 10.1152/physrev.00030.2022, PMID 37843394, PMCID PMC11281823.

25. Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ J. 2012 Jan;5(1):9-19. doi: 10.1097/WOX.0b013e3182439613, PMID 23268465, PMCID PMC3488923.

26. Sharma A, Mohammad A, Saini AK, Goyal R. Neuroprotective effects of fluoxetine on molecular markers of circadian rhythm cognitive deficits, oxidative damage and biomarkers of Alzheimer’s disease-like pathology induced under chronic constant light regime in Wistar rats. ACS Chem Neurosci. 2021;12(12):2233-46. doi: 10.1021/acschemneuro.1c00238, PMID 34029460.

27. Anderkova L, Eliasova I, Marecek R, Janousova E, Rektorova I. Distinct pattern of gray matter atrophy in mild Alzheimer’s disease impacts on cognitive outcomes of noninvasive brain stimulation. J Alzheimers Dis. 2015;48(1):251-60. doi: 10.3233/JAD-150067, PMID 26401945.

28. Bathina S, Das UN. Brain-derived neurotrophic factor and its clinical implications. Arch Med Sci. 2015 Dec 10;11(6):1164-78. doi: 10.5114/aoms.2015.56342, PMID 26788077, PMCID PMC4697050.

29. Kobayashi K, Haneda E, Higuchi M, Suhara T, Suzuki H. Chronic fluoxetine selectively upregulates dopamine D₁-like receptors in the hippocampus. Neuropsychopharmacology. 2012;37(6):1500-8. doi: 10.1038/npp.2011.335, PMID 22278095.

30. Zhang J, Guo J, Zhao X, Chen Z, Wang G, Liu A. Fluoxetine increases hippocampal neurogenesis and ameliorates memory deficits in APP/PS1 transgenic mice. Brain Res. 2017;1657:86-93. doi: 10.1016/j.brainres.2016.11.028.

31. Llorens Martin M, Jurado J, Hernandez F, Avila J. GSK-3β, a pivotal kinase in Alzheimer disease. Front Mol Neurosci. 2014 May 21;7:46. doi: 10.3389/fnmol.2014.00046, PMID 24904272, PMCID PMC4033045.

32. Yang H, Cao Q, Xiong X, Zhao P, Shen D, Zhang Y. Fluoxetine regulates glucose and lipid metabolism via the PI3K AKT signaling pathway in diabetic rats. Mol Med Rep. 2020 Oct;22(4):3073-80. doi: 10.3892/mmr.2020.11416, PMID 32945450, PMCID PMC7453494.

33. Su HC, Ma CT, Yu BC, Chien YC, Tsai CC, Huang WC. Glycogen synthase kinase-3β regulates the anti-inflammatory property of fluoxetine. Int Immunopharmacol. 2012;14(2):150-6. doi: 10.1016/j.intimp.2012.06.015, PMID 22749848.

34. Beurel E, Grieco SF, Jope RS. Glycogen synthase kinase-3 (GSK3): regulation actions and diseases. Pharmacol Ther. 2015;148:114-31. doi: 10.1016/j.pharmthera.2014.11.016, PMID 25435019.

35. Babulal GM, Stout SH, Head D, Holtzman DM, Fagan AM, Morris JC. Neuropsychiatric symptoms and Alzheimer’s disease biomarkers predict driving decline: brief report. J Alzheimers Dis. 2017;58(3):675-80. doi: 10.3233/JAD-170067, PMID 28453487.

36. Kamila P, Kar K, Chowdhury S, Chakraborty P, Dutta R, SS. Effect of neuroinflammation on the progression of Alzheimer’s disease and its significant ramifications for novel anti-inflammatory treatments. IBRO Neurosci Rep. 2025;18:771-82. doi: 10.1016/j.ibneur.2025.05.005, PMID 40510290.

37. Guo L, Wang Z, Li J, Cui L, Dong J, Meng X. MCC950 attenuates inflammation-mediated damage in canines with Staphylococcus pseudintermedius keratitis by inhibiting the NLRP3 inflammasome. Int Immunopharmacol. 2022;108:108857. doi: 10.1016/j.intimp.2022.108857, PMID 35597123.

Published

07-11-2025

How to Cite

LG, P., B. J., B., & KRISHNA, K. L. (2025). NEUROPROTECTIVE EFFECTS OF DONEPEZIL AND FLUOXETINE VIA GSK-3 PATHWAY IN A TRANSGENIC DROSOPHILA MODEL OF ALZHEIMER’S DISEASE: NEUROPSYCHIATRIC AND BEHAVIOURAL ANALYSIS. International Journal of Applied Pharmaceutics, 17(6), 232–240. https://doi.org/10.22159/ijap.2025v17i6.55475

Issue

Section

Original Article(s)

Similar Articles

<< < 1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.