MICROBIAL TRANSLOCATION, TOLL-LIKE RECEPTOR 4, AND KAEMPFERIA GALANGA AS NEW PERSPECTIVES IN DENGUE PATHOGENESIS AND THERAPY: A REVIEW

Authors

  • SAFARI WAHYU JATMIKO Faculty of Medicine, Universitas Muhammadiyah Surakarta (UMS), Jalan Ahmad Yani, Sukoharjo-57169, Central Java, Indonesia
  • RIANDINI AISYAH Faculty of Medicine, Universitas Muhammadiyah Surakarta (UMS), Jalan Ahmad Yani, Sukoharjo-57169, Central Java, Indonesia

DOI:

https://doi.org/10.22159/ijap.2025.v17s2.02

Keywords:

Dengue virus infection, Intestinal permeability, Kaempferia galanga, Lipopolysaccharide, Anti-inflammatory herbs

Abstract

Dengue Virus Infection (DVI) is a major health concern in tropical regions, including Indonesia, with symptoms ranging from mild to severe. Genetic factors, such as Toll-Like Receptor 4 Single-Nucleotide Polymorphisms (TLR4 SNPs), influence disease severity. Severe DVI is associated with a cytokine storm and elevated Lipopolysaccharides (LPS), suggesting microbial translocation due to increased intestinal permeability. Antibiotics reduce gut bacterial populations but may worsen permeability. Kaempferia galanga, an herbal medicine with antimicrobial and anti-inflammatory properties, presents a potential therapeutic approach. This review explores the role of microbial translocation and Toll-like receptors in DVI pathogenesis and the potential of Kaempferia galanga in mitigating these effects. A narrative review was conducted using literature from PubMed, Scopus, and Google Scholar with the keywords "microbial translocation," "TLR4," "Kaempferia galanga," "herbal medicine," and "immune modulation" without publication year restrictions. DVI triggers immune cell activation and proinflammatory cytokine production, leading to increased intestinal permeability and microbial translocation. LPS in the bloodstream activates immunocytes via TLR4, amplifying cytokine production and worsening inflammation. While TLR4 SNPs do not directly influence this process, TLR4 expression is involved. Kaempferia galanga exhibits antibacterial and anti-inflammatory properties that reduce intestinal permeability, thereby limiting microbial translocation. This, in turn, decreases TLR4 activation by LPS, mitigating the cytokine storm. DVI-induced cytokine production increases intestinal permeability, facilitating microbial translocation and systemic inflammation. LPS activates TLR4, driving cytokine release independently of TLR4 SNPs. Kaempferia galanga may inhibit this process through its antimicrobial and anti-inflammatory properties, offering a promising therapeutic strategy.

References

Guzman MG, Harris E. Dengue. Lancet. 2015;385(9966):453-65. doi: 10.1016/S0140-6736(14)60572-9, PMID 25230594.

Huntington MK, Allison J, Nair D. Emerging vector-borne diseases. Am Fam Physician. 2016;94(7):551-7. PMID 27929218.

Anggriyanti ZA, Bestari RS, Nurhayani N, Wibawa A. Uji efektivitas ekstrak metanol daun kayu putih (Melaleuca leucadendron L) terhadap mortalitas larva aedes aegypti. Jur Alumni. 2024;8(3):593-9. doi: 10.33024/jmm.v8i3.16908.

Bestari RS, Hibatullah AI, Santoso TU, Rosyidah DU, Sintowati R, Kusumaningrum TA. Efektivitas larvasida kombinasi daun suren (Toona sureni) dan jeruk nipis (Citrus aurantiifolia). Lontara. 2024;5(1):21-9. doi: 10.53861/lontarariset.v5i1.428.

Bestari RS, Santosa TU, Rosyidah DU, Sintowati R, Kusumaningrum TA, Jeruk Nipis. EED (Citrus aurantiifolia) dengan peg 5% terhadap mortalitas larva aedes aegypti. Ibnu SINA J Kedokt Dan Kesehat. 2024;23(2):83-8.

Lin GL, McGinley JP, Drysdale SB, Pollard AJ. Epidemiology and immune pathogenesis of viral sepsis. Front Immunol. 2018 Sep 27;9:2147. doi: 10.3389/fimmu.2018.02147, PMID 30319615.

Khan J, Khan I, Ghaffar A, Khalid B. Epidemiological trends and risk factors associated with dengue disease in Pakistan (1980-2014): a systematic literature search and analysis. BMC Public Health. 2018;18(1):745. doi: 10.1186/s12889-018-5676-2, PMID 29907109.

Dhanoa A, Hassan SS, Jahan NK, Reidpath DD, Fatt QK, Ahmad MP. Seroprevalence of dengue among healthy adults in a rural community in Southern Malaysia: a pilot study. Infect Dis Pover. 2018;7(1):1. doi: 10.1186/s40249-017-0384-1, PMID 29335021.

Masyeni S, Yohan B, Somia IK, Myint KS, Sasmono RT. Dengue infection in international travellers visiting Bali, Indonesia. J Travel Med. 2018 Aug;25(1):tay061. doi: 10.1093/jtm/tay061, PMID 30113689.

Salles TS, DA Encarnacao, SA Guimaraes T, DE Alvarenga ES, Guimaraes Ribeiro V, DE Meneses MD, DE Castro Salles PF. History epidemiology and diagnostics of dengue in the American and Brazilian contexts: a review. Parasit Vectors. 2018;11(1):264. doi: 10.1186/s13071-018-2830-8, PMID 29690895.

Duarte JL, Diaz Quijano FA, Batista AC, Giatti LL. Climatic variables associated with dengue incidence in a city of the Western Brazilian Amazon region. Rev Soc Bras Med Trop. 2019;52:e20180429. doi: 10.1590/0037-8682-0429-2018, PMID 30810657.

Malavige GN, Ogg GS. Pathogenesis of vascular leak in dengue virus infection. Immunology. 2017;151(3):261-9. doi: 10.1111/imm.12748, PMID 28437586.

Biswas P, Ganguly S, Debnath B. Dengue fever: stages complication diagnosis and prevention strategies. Asian J Pharm Clin Res. 2021;14(5):3-11. doi: 10.22159/ajpcr.2021.v14i5.40960.

Van DE Weg CA, Pannuti CS, DE Araujo ES, Van Den Ham HJ, Andeweg AC, Boas LS. Microbial translocation is associated with extensive immune activation in dengue virus infected patients with severe disease. Plos Negl Trop Dis. 2013;7(5):e2236. doi: 10.1371/journal.pntd.0002236, PMID 23717702.

Van DE Weg CA, Koraka P, Van Gorp EC, Mairuhu AT, Supriatna M, Soemantri A. Lipopolysaccharide levels are elevated in dengue virus-infected patients and correlate with disease severity. J Clin Virol. 2012;53(1):38-42. doi: 10.1016/j.jcv.2011.09.028, PMID 22014848.

Kamaladasa A, Gomes L, Jeewandara C, Shyamali NL, Ogg GS, Malavige GN. Lipopolysaccharide acts synergistically with the dengue virus to induce monocyte production of platelet-activating factor and other inflammatory mediators. Antiviral Res. 2016 Sep;133:183-90. doi: 10.1016/j.antiviral.2016.07.016, PMID 27476044.

Hug H, Mohajeri MH, LA Fata G. Toll like receptors: regulators of the immune response in the human gut. Nutrients. 2018;10(2):203. doi: 10.3390/nu10020203, PMID 29438282.

Kuzmich NN, Sivak KV, Chubarev VN, Porozov YB, Savateeva Lyubimova TN, Peri F. TLR4 signaling pathway modulators as potential therapeutics in inflammation and sepsis. Vaccines. 2017;5(4):34. doi: 10.3390/vaccines5040034, PMID 28976923.

Qin W, Huang G, Chen Z, Zhang Y. Nanomaterials in targeting cancer stem cells for cancer therapy. Front Pharmacol. 2017 Jan 18;8:1. doi: 10.3389/fphar.2017.00001, PMID 28149278.

Wagenaar JF, Mairuhu AT, Van Gorp EC. Genetic influences on dengue virus infections. Dengue Bull. 2004;28:126-34.

Silva MJ, Santana DS, DE Oliveira LG, Monteiro EO, Lima LN. The relationship between 896A/G (rs4986790) polymorphism of TLR4 and infectious diseases: a meta-analysis. Front Genet. 2022 Nov 24;13:1045725. doi: 10.3389/fgene.2022.1045725, PMID 36506333.

Salazar Florez JE, Segura Cardona AM, Restrepo Jaramillo BN, Arboleda Naranjo MA, Giraldo Cardona LS, Echeverri Rendon AP. Immune system gene polymorphisms associated with severe dengue in Latin America: a systematic review. Rev Inst Med Trop Sao Paulo. 2023 Dec 1;65:e58. doi: 10.1590/S1678-9946202365058, PMID 38055376.

Silva T, Gomes L, Jeewandara C, Ogg GS, Malavige GN. Dengue NS1 induces phospholipase A2 enzyme activity prostaglandins and inflammatory cytokines in monocytes. Antiviral Res. 2022 Jun;202:105312. doi: 10.1016/j.antiviral.2022.105312, PMID 35395274.

Chaudhary R, Meher A, Krishnamoorthy P, Kumar H. Interplay of host and viral factors in inflammatory pathway mediated cytokine storm during RNA virus infection. Curr Res Immunol. 2023;4:100062. doi: 10.1016/j.crimmu.2023.100062, PMID 37273890.

Wheatley RM, Caballero JD, Van Der Schalk TE, DE Winter FH, Shaw LP, Kapel N. Gut to lung translocation and antibiotic mediated selection shape the dynamics of Pseudomonas aeruginosa in an ICU patient. Nat Commun. 2022;13(1):6523. doi: 10.1038/s41467-022-34101-2, PMID 36414617.

Zhang Y, Liang X, Bao X, Xiao W, Chen G. Toll like receptor 4 (TLR4) inhibitors: current research and prospective. Eur J Med Chem. 2022 May 5;235:114291. doi: 10.1016/j.ejmech.2022.114291, PMID 35307617.

Gupta M, Singh N, Gulati M, Gupta R, Sudhakar K, Kapoor B. Herbal bioactives in treatment of inflammation: an overview. S Afr J Bot. 2021 Dec;143:205-25. doi: 10.1016/j.sajb.2021.07.027.

Mitropoulou G, Stavropoulou E, Vaou N, Tsakris Z, Voidarou C, Tsiotsias A. Insights into antimicrobial and anti-inflammatory applications of plant bioactive compounds. Microorganisms. 2023;11(5):1156. doi: 10.3390/microorganisms11051156, PMID 37317131.

Ghasemian M, Owlia S, Owlia MB. Review of anti-inflammatory herbal medicines. Adv Pharmacol Sci. 2016;2016:9130979. doi: 10.1155/2016/9130979, PMID 27247570.

Ming X, Yin M, Liyan W. Antibacterial and anti-inflammatory potential of Chinese medicinal herbs: lonicerae flos lonicerae japonicae flos scutellaria baicalensis georgi and forsythia suspensa. Nat Prod Commun. 2022;17(11):1-21.

Nunes CD, Barreto Arantes M, Menezes DE, Faria Pereira S, Leandro DA Cruz L, DE Souza Passos M, Pereira DE Moraes L. Plants as sources of anti-inflammatory agents. Molecules. 2020;25(16):3726. doi: 10.3390/molecules25163726, PMID 32824133.

Parham S, Kharazi AZ, Bakhsheshi Rad HR, Nur H, Ismail AF, Sharif S. Antioxidant antimicrobial and antiviral properties of herbal materials. Antioxidants (Basel). 2020;9(12):1309. doi: 10.3390/antiox9121309, PMID 33371338.

Ye L, Zhang J, Xiao W, Liu S. Efficacy and mechanism of actions of natural antimicrobial drugs. Pharmacol Ther. 2020;216:107671. doi: 10.1016/j.pharmthera.2020.107671, PMID 32916205.

Taslim NA, Djide MN, Rifai Y, Syahruddin AN, Rampo YR, Mustamin M. Double-blind randomized clinical trial of Kaempferia Galanga l extract as an anti-inflammation (prostaglandin E2 and tumor necrosis factor alpha) on osteoarthritis. Asian J Pharm Clin Res. 2019;12(5):63-6.

Azharia SA, Cahyanto T, Kencur KET (Kaempferia galanga) DI DesaMajakerta. Kecamatan Majalaya, kabupaten Bandung. J Teknol Pangan Ilmu Pertan. 2023;1(4):247-53.

Wang SY, Zhao H, Xu HT, Han XD, Wu YS, Xu FF. Kaempferia galanga L.: progresses in phytochemistry pharmacology toxicology and ethnomedicinal uses. Front Pharmacol. 2021;12:675350. doi: 10.3389/fphar.2021.675350, PMID 34737693.

Hashiguchi A, San Thawtar M, Duangsodsri T, Kusano M, Watanabe KN. Biofunctional properties and plant physiology of Kaempferia spp.: status and trends. J Funct Foods. 2022 May;92:105029. doi: 10.1016/j.jff.2022.105029.

Yang Y, Tian S, Wang F, LI Z, Liu L, Yang X. Chemical composition and biological activity of essential oil of Kaempferia galanga: a review. Int J Agric Biol. 2018;20:457-62.

Fallah A, Sedighian H, Behzadi E, Havaei SA, Kachuei R, Imani Fooladi AA. The role of serum circulating microbial toxins in severity and cytokine storm of covid positive patients. Microb Pathog. 2023 Jan;174:105888. doi: 10.1016/j.micpath.2022.105888, PMID 36402345.

Oliva A, Miele MC, Timoteo F, Angelis M, Mauro V, Aronica R. Persistent systemic microbial translocation and intestinal damage during coronavirus Disease-19. Front Immunol. 2021 Jul;12:708149. doi: 10.3389/fimmu.2021.708149, PMID 34335624.

Sandler NG, Douek DC. Microbial translocation in HIV infection: causes consequences and treatment opportunities. Nat Rev Microbiol. 2012;10(9):655-66. doi: 10.1038/nrmicro2848, PMID 22886237.

Kouzu K, Tsujimoto H, Kishi Y, Ueno H, Shinomiya N. Bacterial translocation in gastrointestinal cancers and cancer treatment. Biomedicines. 2022;10(2):380. doi: 10.3390/biomedicines10020380, PMID 35203589.

Greenfield KG, Badovinac VP, Griffith TS, Knoop KA. Sepsis cytokine storms and immunopathology: the divide between neonates and adults. Immunohorizons. 2021;5(6):512-22. doi: 10.4049/immunohorizons.2000104, PMID 34183380.

Zhou X, LI J, Guo J, Geng B, JI W, Zhao Q. Gut-dependent microbial translocation induces inflammation and cardiovascular events after ST-elevation myocardial infarction. Microbiome. 2018;6(1):66. doi: 10.1186/s40168-018-0441-4, PMID 29615110.

Hill GR, Ferrara JL. The primacy of the gastrointestinal tract as a target organ of acute graft versus host disease: rationale for the use of cytokine shields in allogeneic bone marrow transplantation. Blood. 2000;95(9):2754-9. doi: 10.1182/blood.V95.9.2754.009k25_2754_2759, PMID 10779417.

Sfera A, Hazan S, Klein C, del Campo CM, Sasannia S, Anton JJ. Microbial translocation disorders: assigning an etiology to idiopathic illnesses. Appl Microbiol. 2023;3(1):212-40. doi: 10.3390/applmicrobiol3010015.

Fine RL, Manfredo Vieira S, Gilmore MS, Kriegel MA. Mechanisms and consequences of gut commensal translocation in chronic diseases. Gut Microbes. 2020;11(2):217-30. doi: 10.1080/19490976.2019.1629236, PMID 31306081.

Sellahewa KH. A hypothetical intervention to reduce plasma leakage in dengue haemorrhagic fever plasma leakage in DHF. Dengue Bull. 2011;35:94-8.

Vejchapipat P, Theamboonlers A, Chongsrisawat V, Poovorawan Y. An evidence of intestinal mucosal injury in dengue infection. Southeast Asian J Trop Med Public Health. 2006;37(1):79-82. PMID 16771216.

Nanda JD, HO TS, Satria RD, Jhan MK, Wang YT, Lin CF. IL-18: the forgotten cytokine in dengue immunopathogenesis. J Immunol Res. 2021 Nov 19;2021:8214656. doi: 10.1155/2021/8214656, PMID 34840991.

Nanda JD, Jung CJ, Satria RD, Jhan MK, Shen TJ, Tseng PC. Serum IL-18 is a potential biomarker for predicting severe dengue disease progression. J Immunol Res. 2021 Oct 25;2021:7652569. doi: 10.1155/2021/7652569, PMID 34734091.

Shrivastava G, Valenzuela Leon PC, Calvo E. Inflammasome fuels dengue severity. Front Cell Infect Microbiol. 2020;10:489. doi: 10.3389/fcimb.2020.00489, PMID 33014899.

Van DE Weg CA, Huits RM, Pannuti CS, Brouns RM, Van Den Berg RW, Van Den Ham HJ. Hyperferritinaemia in dengue virus-infected patients is associated with immune activation and coagulation disturbances. Plos Negl Trop Dis. 2014;8(10):e3214. doi: 10.1371/journal.pntd.0003214, PMID 25299654.

Allam O, Samarani S, Mehraj V, Jenabian MA, Tremblay C, Routy JP. HIV induces production of IL-18 from intestinal epithelial cells that increases intestinal permeability and microbial translocation. PLOS One. 2018;13(3):e0194185. doi: 10.1371/journal.pone.0194185, PMID 29601578.

Van Bilsen JH, Van Den Brink W, Van Den Hoek AM, Dulos R, Caspers MP, Kleemann R. Mechanism-based biomarker prediction for low-grade inflammation in liver and adipose tissue. Front Physiol. 2021;12:703370. doi: 10.3389/fphys.2021.703370, PMID 34858196.

Ruscitti P, Berardicurti O, Barile A, Cipriani P, Shoenfeld Y, Iagnocco A. Severe COVID-19 and related hyperferritinaemia: more than an innocent bystander? Ann Rheum Dis. 2020;79(11):1515-6. doi: 10.1136/annrheumdis-2020-217618, PMID 32434816.

Marin Palma D, Sirois CM, Urcuqui Inchima S, Hernandez JC. Inflammatory status and severity of disease in dengue patients are associated with lipoprotein alterations. Plos One. 2019;14(3):e0214245. doi: 10.1371/journal.pone.0214245, PMID 30901375.

Al Sadi R, Guo S, Dokladny K, Smith MA, Ye D, Kaza A. Mechanism of interleukin-1β induced increase in mouse intestinal permeability in vivo. J Interferon Cytokine Res. 2012;32(10):474-84. doi: 10.1089/jir.2012.0031, PMID 22817402.

Kaminsky LW, Al Sadi R, MA TY. IL-1β and the intestinal epithelial tight junction barrier. Front Immunol. 2021 Oct 25;12:767456. doi: 10.3389/fimmu.2021.767456, PMID 34759934.

Rawat M, Nighot M, Al Sadi R, Gupta Y, Viszwapriya D, Yochum G. IL1B increases intestinal tight junction permeability by up-regulation of MIR200C-3p, which degrades occludin mRNA. Gastroenterology. 2020;159(4):1375-89. doi: 10.1053/j.gastro.2020.06.038, PMID 32569770.

Terry S, Nie M, Matter K, Balda MS. Rho signaling and tight junction functions. Physiology (Bethesda). 2010;25(1):16-26. doi: 10.1152/physiol.00034.2009, PMID 20134025.

Zhang Y, Ding X, Miao C, Chen J. Propofol attenuated TNF-α-modulated occludin expression by inhibiting Hif-1α/ VEGF/ VEGFR-2/ ERK signaling pathway in hCMEC/D3 cells. BMC Anesthesiol. 2019;19(1):127. doi: 10.1186/s12871-019-0788-5, PMID 31288745.

Amoozadeh Y, Dan Q, Xiao J, Waheed F, Szaszi K. Tumor necrosis factor-α induces a biphasic change in claudin-2 expression in tubular epithelial cells: role in barrier functions. Am J Physiol Cell Physiol. 2015;309(1):C38-50. doi: 10.1152/ajpcell.00388.2014, PMID 25948735.

Kannan Y, Yu J, Raices RM, Seshadri S, Wei M, Caligiuri MA. IκBζ augments IL-12- and IL-18-mediated IFN-γ production in human NK cells. Blood. 2011;117(10):2855-63. doi: 10.1182/blood-2010-07-294702, PMID 21224476.

Choi Y, Saron WA, O Neill A, Senanayake M, Wilder-Smith A, Rathore AP. NKT cells promote Th1 immune bias to dengue virus that governs long-term protective antibody dynamics. J Clin Invest. 2024;134(18):e169251. doi: 10.1172/JCI169251, PMID 39088280.

Tian Y, Grifoni A, Sette A, Weiskopf D. Human T cell response to dengue virus infection. Front Immunol. 2019;10:2125. doi: 10.3389/fimmu.2019.02125, PMID 31552052.

Bousoik E, Montazeri Aliabadi H. Do we know jack about jak? a closer look at JAK/STAT signaling pathway. Front Oncol. 2018;8:287. doi: 10.3389/fonc.2018.00287, PMID 30109213.

Cao M, Wang P, Sun C, HE W, Wang F. Amelioration of IFN-γ and TNF-α-induced intestinal epithelial barrier dysfunction by berberine via suppression of MLCK-MLC phosphorylation signaling pathway. Plos One. 2013;8(5):e61944. doi: 10.1371/journal.pone.0061944, PMID 23671580.

Yang S, YU M, Sun L, Xiao W, Yang X, Sun L. Interferon-γ-induced intestinal epithelial barrier dysfunction by NF-κB/HIF-1α pathway. J Interferon Cytokine Res. 2014;34(3):195-203. doi: 10.1089/jir.2013.0044, PMID 24237301.

Beaurepaire C, Smyth D, McKay DM. Interferon-γ regulation of intestinal epithelial permeability. J Interferon Cytokine Res. 2009;29(3):133-44. doi: 10.1089/jir.2008.0057, PMID 19196071.

Lee SH. Intestinal permeability regulation by tight junction: implication on inflammatory bowel diseases. Intest Res. 2015;13(1):11-8. doi: 10.5217/ir.2015.13.1.11, PMID 25691839.

Bardenbacher M, Ruder B, Britzen Laurent N, Schmid B, Waldner M, Naschberger E. Permeability analyses and three-dimensional imaging of interferon-gamma induced barrier disintegration in intestinal organoids. Stem Cell Res. 2019 Mar;35:101383. doi: 10.1016/j.scr.2019.101383, PMID 30776676.

Fournier BM, Parkos CA. The role of neutrophils during intestinal inflammation. Mucosal Immunol. 2012;5(4):354-66. doi: 10.1038/mi.2012.24, PMID 22491176.

Kopp ZA, Jain U, Van Limbergen J, Stadnyk AW. Do antimicrobial peptides and complement collaborate in the intestinal mucosa? Front Immunol. 2015;6(17):17. doi: 10.3389/fimmu.2015.00017, PMID 25688244.

Sina C, Kemper C, Derer S. The intestinal complement system in inflammatory bowel disease: shaping intestinal barrier function. Semin Immunol. 2018 Jun;37:66-73. doi: 10.1016/j.smim.2018.02.008, PMID 29486961.

Mazgaeen L, Gurung P. Recent advances in lipopolysaccharide recognition systems. Int J Mol Sci. 2020;21(2):379. doi: 10.3390/ijms21020379, PMID 31936182.

Guo S, Nighot M, Al Sadi R, Alhmoud T, Nighot P, Ma TY. Lipopolysaccharide regulation of intestinal tight junction permeability is mediated by TLR4 signal transduction pathway activation of FAK and MyD88. J Immunol. 2015;195(10):4999-5010. doi: 10.4049/jimmunol.1402598, PMID 26466961.

Satoh T, Akira S. Toll like receptor signaling and its inducible proteins. Microbiol Spectr. 2016;4(6):1-7. doi: 10.1128/microbiolspec.MCHD-0040-2016, PMID 28084212.

Singh AP, Sharma AK, Singh TG. Unlocking the therapeutic potential: exploring Nf-Κb as a viable target for diverse pharmacological approaches. Int J Pharm Pharm Sci. 2024;16(6):1-9. doi: 10.22159/ijpps.2024v16i6.49530.

Guo C, Zhou Z, Wen Z, Liu Y, Zeng C, Xiao D. Global epidemiology of dengue outbreaks in 1990-2015: a systematic review and meta-analysis. Front Cell Infect Microbiol. 2017 Jul;7:317. doi: 10.3389/fcimb.2017.00317, PMID 28748176.

WU Q, TU H, LI J. Multifaceted roles of chemokine C-X-C motif ligand 7 in inflammatory diseases and cancer. Front Pharmacol. 2022;13:914730. doi: 10.3389/fphar.2022.914730, PMID 35837284.

Zhang D, Frenette PS. Cross-talk between neutrophils and the microbiota. Blood. 2019;133(20):2168-77. doi: 10.1182/blood-2018-11-844555, PMID 30898860.

Allonso D, Vazquez S, Guzman MG, Mohana Borges R. High mobility group box 1 protein as an auxiliary biomarker for dengue diagnosis. Am J Trop Med Hyg. 2013;88(3):506-9. doi: 10.4269/ajtmh.2012.12-0619, PMID 23269659.

Resman Rus K, Fajs L, Korva M, Avsic Zupanc T. HMGB1 is a potential biomarker for severe viral hemorrhagic fevers. Plos Negl Trop Dis. 2016;10(6):e0004804. doi: 10.1371/journal.pntd.0004804, PMID 27348219.

Yang Z, LI L, Chen L, Yuan W, Dong L, Zhang Y. PARP-1 mediates LPS-induced HMGB1 release by macrophages through regulation of HMGB1 acetylation. J Immunol. 2014;193(12):6114-23. doi: 10.4049/jimmunol.1400359, PMID 25392528.

Asavarut P, Zhao H, GU J, MA D. The role of HMGB1 in inflammation-mediated organ injury. Acta Anaesthesiol Taiwan. 2013;51(1):28-33. doi: 10.1016/j.aat.2013.03.007, PMID 23711603.

Pilzweger C, Holdenrieder S. Circulating HMGB1 and RAGE as clinical biomarkers in malignant and autoimmune diseases. Diagnostics (Basel). 2015;5(2):219-53. doi: 10.3390/diagnostics5020219, PMID 26854151.

Zainal N, Chang CP, Cheng YL, WU YW, Anderson R, Wan SW. Resveratrol treatment reveals a novel role for HMGB1 in regulation of the type 1 interferon response in dengue virus infection. Sci Rep. 2017;7:42998. doi: 10.1038/srep42998, PMID 28216632.

Kamau E, Takhampunya R, LI T, Kelly E, Peachman KK, Lynch JA. Dengue virus infection promotes translocation of high mobility group box 1 protein from the nucleus to the cytosol in dendritic cells upregulates cytokine production and modulates virus replication. J Gen Virol. 2009;90(8):1827-35. doi: 10.1099/vir.0.009027-0.

Yang R, Tenhunen J, Tonnessen TI. HMGB1 and histones play a significant role in inducing systemic inflammation and multiple organ dysfunctions in severe acute pancreatitis. Int J Inflam. 2017 Feb 21;2017:1817564. doi: 10.1155/2017/1817564, PMID 28316860.

Ferwerda B, MC Call MB, Verheijen K, Kullberg BJ, Van Der Ven AJ, Van Der Meer JW. Functional consequences of toll-like receptor 4 polymorphisms. Mol Med. 2008;14(5-6):346-52. doi: 10.2119/2007-00135.Ferwerda, PMID 18231573.

Castro Alarcon N, Rodriguez Garcia R, Ruiz Rosas M, Munoz Valle JF, Guzman Guzman IP, Parra Rojas I. Association between TLR4 polymorphisms (896 A>G, 1196 C>T, - 2570 A>G, - 2081 G>A) and virulence factors in uropathogenic Escherichia coli. Clin Exp Med. 2019;19(1):105-13. doi: 10.1007/s10238-018-0527-0, PMID 30220001.

Djamiatun K, Ferwerda B, Netea MG, Van Der Ven AJ, Dolmans WM, Faradz SM. Toll like receptor 4 polymorphisms in dengue virus infected children. Am J Trop Med Hyg. 2011;85(2):352-4. doi: 10.4269/ajtmh.2011.10-0728, PMID 21813858.

Sharma S, Singh SK, Kakkar K, Nyari N, Dhole TN, Kashyap R. Analysis of TLR4 (Asp299Gly and Thr399Ile) gene polymorphisms and mRNA level in patients with dengue infection: a case control study. Infect Genet Evol. 2016 Sep 1;43:412-7. doi: 10.1016/j.meegid.2016.06.027, PMID 27302095.

Wang WH, Urbina AN, Chang MR, Assavalapsakul W, Lu PL, Chen YH. Dengue hemorrhagic fever a systemic literature review of current perspectives on pathogenesis prevention and control. J Microbiol Immunol Infect. 2020;53(6):963-78. doi: 10.1016/j.jmii.2020.03.007, PMID 32265181.

Phadungsombat J, Nakayama EE, Shioda T. Unraveling dengue virus diversity in Asia: an epidemiological study through genetic sequences and phylogenetic analysis. Viruses. 2024;16(7):1046. doi: 10.3390/v16071046, PMID 39066210.

Rodriguez Roche R, Blanc H, Borderia AV, Diaz G, Henningsson R, Gonzalez D. Increasing clinical severity during a dengue virus type 3 Cuban epidemic: deep sequencing of evolving viral populations. J Virol. 2016;90(9):4320-33. doi: 10.1128/JVI.02647-15, PMID 26889031.

Utama IM, Lukman N, Sukmawati DD, Alisjahbana B, Alam A, Murniati D. Dengue viral infection in Indonesia: epidemiology diagnostic challenges and mutations from an observational cohort study. Plos Negl Trop Dis. 2019 Oct;13(10):e0007785. doi: 10.1371/journal.pntd.0007785, PMID 31634352.

Sasmono RT, Kalalo LP, Trismiasih S, Denis D, Yohan B, Hayati RF. Multiple introductions of dengue virus strains contribute to dengue outbreaks in east Kalimantan Indonesia, in 2015-2016. Virol J. 2019 Jul;16(1):93. doi: 10.1186/s12985-019-1202-0, PMID 31345242.

Arguni E, Indriani C, Rahayu A, Supriyati E, Yohan B, Hayati RF. Dengue virus population genetics in Yogyakarta, Indonesia prior to city-wide Wolbachia deployment. Infect Genet Evol. 2022 Aug;102:105308. doi: 10.1016/j.meegid.2022.105308, PMID 35644356.

Nusa R, Prasetyowati H, Meutiawati F, Yohan B, Trimarsanto H, Setianingsih TY. Molecular surveillance of dengue in Sukabumi, West Java Province, Indonesia. J Infect Dev Ctries. 2014;8(6):733-41. doi: 10.3855/jidc.3959, PMID 24916872.

Tatura SN, Denis D, Santoso MS, Hayati RF, Kepel BJ, Yohan B. Outbreak of severe dengue associated with DENV-3 in the city of Manado, North Sulawesi, Indonesia. Int J Infect Dis. 2021;106:185-96. doi: 10.1016/j.ijid.2021.03.065, PMID 33774189.

Santoso MS, Nara MB, Nugroho DK, Yohan B, Purnama A, Boro AM. Investigation of severe dengue outbreak in Maumere, East Nusa Tenggara, Indonesia: clinical serological and virological features. Plos One. 2025;20(2):e0317854. doi: 10.1371/journal.pone.0317854, PMID 39965014.

Aryati A, Wrahatnala BJ, Yohan B, Fanny M, Hakim FK, Sunari EP. Dengue virus serotype 4 is responsible for the outbreak of dengue in east Java city of Jember, Indonesia. Viruses. 2020;12(9):913. doi: 10.3390/v12090913, PMID 32825262.

Yadav AK, Chowdhary R, Siddiqui A, Malhotra AG, Kanwar JR, Kumar A. Emergence of a novel dengue virus serotype-2 genotype IV lineage III strain and displacement of dengue virus serotype-1 in central India (2019-2023). Viruses. 2025 Jan 23;17(2):144. doi: 10.3390/v17020144.

Mailiana R, Fauzi L. Determinants of dengue hemorrhagic fever deaths: a hospital-based cross-sectional study. J Heal Educ. 2024;9(1):62-71.

Agung A, Paramacarya N, Wirawan IM, Agung A, Widiasa M, Suryana K. Relationship between the degree of dengue hemorrhagic fever and comorbid in patients at Wangaya General Teaching Hospital. Int J Adv Med. 2025;12(1):22-6. doi: 10.18203/2349-3933.ijam20243810.

AT, S CE, Badveti S, Vs KK, Kumar V, S VS. Clinical profile of dengue seropositive infection from a Tertiary Care Hospital Situated in Mysuru, South India. Cureus. 2024;16(7):e65175. doi: 10.7759/cureus.65175, PMID 39176322.

Toledo J, George L, Martinez E, Lazaro A, Han WW, Coelho GE. Relevance of non-communicable comorbidities for the development of the severe forms of dengue: a systematic literature review. Plos Negl Trop Dis. 2016;10(1):e0004284. doi: 10.1371/journal.pntd.0004284, PMID 26727113.

Pang J, Salim A, Lee VJ, Hibberd ML, Chia KS, Leo YS. Diabetes with hypertension as risk factors for adult dengue hemorrhagic fever in a predominantly dengue serotype 2 epidemic: a case control study. PLOS Negl Trop Dis. 2012;6(5):e1641. doi: 10.1371/journal.pntd.0001641, PMID 22563519.

Fonseca Portilla R, Martinez Gil M, Morgenstern Kaplan D. Risk factors for hospitalization and mortality due to dengue fever in a Mexican population: a retrospective cohort study. Int J Infect Dis. 2021 Sep;110:332-6. doi: 10.1016/j.ijid.2021.07.062, PMID 34332086.

Coffey LL, Mertens E, Brehin AC, Fernandez Garcia MD, Amara A, Despres P. Human genetic determinants of dengue virus susceptibility. Microbes Infect. 2009;11(2):143-56. doi: 10.1016/j.micinf.2008.12.006, PMID 19121645.

Chaudhary R, Meher A, Krishnamoorthy P, Kumar H. Interplay of host and viral factors in inflammatory pathway mediated cytokine storm during RNA virus infection. Curr Res Immunol. 2023 May 26;4:100062. doi: 10.1016/j.crimmu.2023.100062, PMID 37273890.

Jones WG, Barber AE, Minei JP, Fahey TJ, Shires GT, Shires GT. Antibiotic prophylaxis diminishes bacterial translocation but not mortality in experimental burn wound sepsis. The Journal of Trauma: Injury Infection and Critical Care. 1990;30(6):737-40. doi: 10.1097/00005373-199006000-00015.

Yang W, Guo G, Sun C. Therapeutic potential of rifaximin in liver diseases. Biomed Pharmacother. 2024;178:117283. doi: 10.1016/j.biopha.2024.117283, PMID 39126775.

Zhang J, Zhang C, Zhang T, Zhang L, Duan L. Distinct effects of non absorbed agents rifaximin and berberine on the microbiota gut brain axis in dysbiosis induced visceral hypersensitivity in rats. J Neurogastroenterol Motil. 2023;29(4):520-31. doi: 10.5056/jnm22182, PMID 37814439.

Roger C. Understanding antimicrobial pharmacokinetics in critically ill patients to optimize antimicrobial therapy: a narrative review. J Intensive Med. 2024;4(3):287-98. doi: 10.1016/j.jointm.2023.12.007, PMID 39035618.

Baquero F, Levin BR. Proximate and ultimate causes of the bactericidal action of antibiotics. Nat Rev Microbiol. 2021;19(2):123-32. doi: 10.1038/s41579-020-00443-1, PMID 33024310.

Shayista H, Prasad MN, Raj SN, Prasad A, Lakshmi S, Ranjini HK. Complexity of antibiotic resistance and its impact on gut microbiota dynamics. Engineering Microbiology. 2025;5(1):100187. doi: 10.1016/j.engmic.2024.100187.

Yip AY, King OG, Omelchenko O, Kurkimat S, Horrocks V, Mostyn P. Antibiotics promote intestinal growth of carbapenem resistant enterobacteriaceae by enriching nutrients and depleting microbial metabolites. Nat Commun. 2023;14(1):5094. doi: 10.1038/s41467-023-40872-z, PMID 37607936.

Guinan J, Wang S, Hazbun TR, Yadav H, Thangamani S. Antibiotic-induced decreases in the levels of microbial derived short chain fatty acids correlate with increased gastrointestinal colonization of candida albicans. Sci Rep. 2019;9(1):8872. doi: 10.1038/s41598-019-45467-7, PMID 31222159.

Romick Rosendale LE, Haslam DB, Lane A, Denson L, Lake K, Wilkey A. Antibiotic exposure and reduced short-chain fatty acid production after hematopoietic stem cell transplant. Biol Blood Marrow Transplant. 2018;24(12):2418-24. doi: 10.1016/j.bbmt.2018.07.030, PMID 30055351.

Li D, Lan X, Xu L, Zhou S, Luo H, Zhang X. Influence of gut microbial metabolites on tumor immunotherapy: mechanisms and potential natural products. Front Immunol. 2025 Feb 24;16:1552010. doi: 10.3389/fimmu.2025.1552010, PMID 40066456.

Lou X, Xue J, Shao R, Yang Y, Ning D, Mo C. Fecal microbiota transplantation and short-chain fatty acids reduce sepsis mortality by remodeling antibiotic-induced gut microbiota disturbances. Front Immunol. 2023 Jan 11;13:1063543. doi: 10.3389/fimmu.2022.1063543, PMID 36713461.

D Elia RV, Harrison K, Oyston PC, Lukaszewski RA, Clark GC. Targeting the cytokine storm for therapeutic benefit. Clin Vaccine Immunol. 2013;20(3):319-27. doi: 10.1128/CVI.00636-12, PMID 23283640.

Tanaka E, Inoue E, Hoshi D, Shimizu Y, Kobayashi A, Sugimoto N. Cost-effectiveness of tocilizumab a humanized anti-interleukin-6 receptor monoclonal antibody versus methotrexate in patients with rheumatoid arthritis using real-world data from the IORRA observational cohort study. Mod Rheumatol. 2015;25(4):503-13. doi: 10.3109/14397595.2014.1001475, PMID 25547018.

Araujo C, Dantas A, Veronica S, Almeida M, Vaez AC, Cunha JO. Determining the association between dengue and social inequality factors in North Eastern Brazil: a spatial modeling. Geospat Health. 2020 Jun 17;15(854):71-80. doi: 10.4081/gh.2020.854.

Aleman RS, Moncada M, Aryana KJ. Leaky gut and the ingredients that help treat it: a review. Molecules. 2023;28(2):619. doi: 10.3390/molecules28020619, PMID 36677677.

Camilleri M. Leaky gut: mechanisms measurement and clinical implications in humans. Gut. 2019;68(8):1516-26. doi: 10.1136/gutjnl-2019-318427, PMID 31076401.

Khairullah AR, Solikhah TI, Ansori AN, Hanisia RH, Puspitarani GA, Fadholly A. Medicinal importance of Kaempferia galanga L. (Zingiberaceae): a comprehensive review. J Herb Med Pharmacol. 2021;10(3):281-8. doi: 10.34172/jhp.2021.32.

Marina Silalahi. Kencur SM. (Kaempferia galanga) dan bioaktivitasnya. J Pendidik Inform dan Sains. 2019;8(1):127-42. doi: 10.31571/saintek.v8i1.1178.

Devi KD, Singh SB, Singh NS, Chingakham BS, Punyarani K, Devi HS. Evaluation of genetic relationships and chemical assay of Kaempferia galanga L. cultivars found in Manipur, North East India. Int J Recent Sci Res. 2015;6(6):4366-73.

Muzzazinah M, Yunus A, Rinanto Y, Suherlan Y, Ramli M, Putri DS. Profile of chemical compounds and potency of galangal (Kaempferia galanga L.) essential oils from Kemuning Village Karanganyar District Central Java Indonesia. Biodiversitas. 2024;25(4):1386-93. doi: 10.13057/biodiv/d250406.

Belgis M. Nafi A, Giyarto G, Wulandari AD. Antibacterial activity of Kaempferia galanga L. hard candy against streptococcus pyogenes and staphylococcus aureus bacteria growth. Int J Food Agric Nat Resour. 2021;2(1):1-8. doi: 10.46676/ij-fanres.v2i1.22.

Men TT, Trang BH, Phien HH, Ngan LN, Quy TN, Khang DT. Potential antibacterial and antifungal effect of extracts from Kaempferia galanga L. Chem Eng Trans. 2024;110:409-14. doi: 10.3303/CET24110069.

Ngurah BI, NI Nyoman Y, Dafroyati Y, Gede Aris Gunadi I, Taneo M. Antibacterial evaluation of 2,4-dihidroxy benzoic acid on escherichia coli and vibrio alginolyticus. J Phys Conf S. 2020;1503:1-7. doi: 10.1088/1742-6596/1503/1/012027.

Song L, WU X, Xie J, Zhang H, Yang H, Zeng Q. Kaempferia galanga linn. extract a potential antibacterial agent for preservation of poultry products. LWT Food Sci Technol. 2021 Jul;147:111553. doi: 10.1016/j.lwt.2021.111553.

Nagata K, Araumi S, Ando D, Ito N, Ando M, Ikeda Y. Kaempferol suppresses the activation of mast cells by modulating the expression of FcεRI and SHIP1. Int J Mol Sci. 2023;24(6):5997. doi: 10.3390/ijms24065997, PMID 36983066.

Umar MI, Asmawi MZ, Sadikun A, Majid AM, Al Suede FS, Hassan LE. Ethyl-p-methoxycinnamate isolated from Kaempferia galanga inhibits inflammation by suppressing interleukin-1 tumor necrosis factor-α and angiogenesis by blocking endothelial functions. Clinics (Sao Paulo). 2014;69(2):134-44. doi: 10.6061/clinics/2014(02)10, PMID 24519205.

Tarasuk M, Songprakhon P, Muhamad P, Panya A, Sattayawat P, Yenchitsomanus PT. Dual action effects of ethyl-p-methoxycinnamate against dengue virus infection and inflammation via NF-κB pathway suppression. Sci Rep. 2024;14(1):9322. doi: 10.1038/s41598-024-60070-1, PMID 38654034.

Pliego Zamora A, Kim J, Vajjhala PR, Thygesen SJ, Watterson D, Modhiran N. Kinetics of severe dengue virus infection and development of gut pathology in mice. J Virol. 2023;97(11):e0125123. doi: 10.1128/jvi.01251-23, PMID 37850747.

Bhatt P, Varma M, Sood V, Ambikan A, Jayaram A, Babu N. Temporal cytokine storm dynamics in dengue infection predicts severity. Virus Res. 2024;341:199306. doi: 10.1016/j.virusres.2023.199306, PMID 38176525.

Paranavitane SA, Gomes L, Kamaladasa A, Adikari TN, Wickramasinghe N, Jeewandara C. Dengue NS1 antigen as a marker of severe clinical disease. BMC Infect Dis. 2014 Oct 31;14:570. doi: 10.1186/s12879-014-0570-8, PMID 25366086.

Lin CK, Tseng CK, Wu YH, Liaw CC, Lin CY, Huang CH. Cyclooxygenase-2 facilitates dengue virus replication and serves as a potential target for developing antiviral agents. Sci Rep. 2017;7:44701. doi: 10.1038/srep44701, PMID 28317866.

Riasari H, Rachmaniar R, Wahyuni S. Evaluation patch of rhizoma extract kencur (Kaempferia galanga L.) as anti-inflammatory with enhancer. IJPST. 2019;6(2):59-64. doi: 10.24198/ijpst.v6i2.18932.

Wahyuni IS, Sufiawati I, Nittayananta W, Saptarini NM, Levita J. The effect of Kaempferol ethyl-methoxycinnamate and the ethanol extract of Kaempferia galanga rhizome on the production of prostaglandin by in vitro and in silico study. Rasayan J Chem. 2022;15(2):984-90. doi: 10.31788/RJC.2022.1526826.

Liu H, Chen Y, Hu Y, Zhang W, Zhang H, Su T. Protective effects of an alcoholic extract of Kaempferia galanga L. Rhizome on ethanol-induced gastric ulcer in mice. J Ethnopharmacol. 2024;325:117845. doi: 10.1016/j.jep.2024.117845, PMID 38307355.

Julianti TB, Bakar MF, Wikantyasning ER. Formulation and optimization of effervescent tablet containing Kaempferia Galanga. Int J App Pharm. 2024;16(5):133-9. doi: 10.22159/ijap.2024v16s5.52464.

Published

15-06-2025

How to Cite

JATMIKO, S. W., & AISYAH, R. (2025). MICROBIAL TRANSLOCATION, TOLL-LIKE RECEPTOR 4, AND KAEMPFERIA GALANGA AS NEW PERSPECTIVES IN DENGUE PATHOGENESIS AND THERAPY: A REVIEW. International Journal of Applied Pharmaceutics, 17(2), 1–12. https://doi.org/10.22159/ijap.2025.v17s2.02

Issue

Section

Review Article(s)

Similar Articles

<< < 86 87 88 89 > >> 

You may also start an advanced similarity search for this article.