DEVELOPMENT AND OPTIMIZATION OF MESOPOROUS SILICA NANOPARTICLES LOADED WITH ADIANTUM PHILIPPINES FRACTION AND THUJA OIL AS A POTENTIAL WOUND HEALING AGENT

Authors

  • SWATI A. PAGAR MET's Institute of Pharmacy (Affiliated to Savitribai Phule Pune University) Adgaon, Nashik. MS, India
  • NILIMA A. THOMBRE MET's Institute of Pharmacy (Affiliated to Savitribai Phule Pune University) Adgaon, Nashik. MS, India

DOI:

https://doi.org/10.22159/ijap.2026v18i1.55787

Keywords:

Mesoporous silica nanoparticles, Wound healing, Response surface methodology, Adiantum philippines, Thuja occidentalis, Controlled drug delivery

Abstract

Objective: This study aimed to develop and optimize mesoporous silica nanoparticles (MSNs) loaded with Adiantum Philippines chloroform fraction and Thuja occidentalis essential oil for enhanced wound healing applications, addressing the clinical need for improved topical therapeutic delivery systems.

Methods: MSNs were synthesized using the sol-gel method and optimized through Box-Behnken factorial design with three variables: CTAB concentration (1-3g), TEOS volume (8-16mL), and stirring time (1-4h). Seventeen formulations were evaluated for particle size, zeta potential, and entrapment efficiency. The optimized formulation was characterized using FTIR, DSC, SEM, and DLS, followed by in-vitro drug release and stability studies. Wound healing efficacy was assessed using full-thickness excision wounds in Balb-c mice over 14 days.

Results: The optimized F5 formulation, selected based on desirability function (1.000), demonstrated superior properties: particle size 89.3±4.8nm, zeta potential -26.8±1.0mV, and entrapment efficiencies of 86.4% and 89.2% for AP and TO respectively. F5 exhibited controlled drug release (81-82% over 12h) and excellent stability over 6 months. In-vivo studies revealed significantly enhanced wound healing with 96.2±2.1% contraction at day 14 compared to control (72.3±4.8%) and standard treatment (89.1±3.5%) (p<0.01).

Conclusion: The optimized MSN formulation demonstrates promising wound healing potential with accelerated tissue regeneration compared to standard silver sulfadiazine treatment. These preclinical findings suggest potential for clinical development pending comprehensive safety, toxicity, and regulatory studies.

References

1. Sen CK. Human wound and its burden: updated 2022 compendium of estimates. Adv Wound Care (New Rochelle). 2023;12(12):657-70. doi: 10.1089/wound.2023.0150. PMID: 37756368.

2. Sen CK. Human wound and its burden: updated 2020 compendium of estimates. Adv Wound Care (New Rochelle). 2021;10(5):281-92. doi: 10.1089/wound.2021.0026. PMID: 33733885.

3. Sharma A, Shankar R, Yadav AK, Pratap A, Ansari MA, Srivastava V. Burden of chronic nonhealing wounds: an overview of the worldwide humanistic and economic burden to the healthcare system. Int J Low Extrem Wounds. 2024;23(2):241-54. doi: 10.1177/15347346241246339. PMID: 38715283.

4. Mahendran MIMS, Gopalakrishnan V, Saravanan V, Dhamodharan R, Jothimani P, Balasubramanian M, et al. Managing drug therapy-related problems and assessment of chronic diabetic wounds. Curr Med Res Opin. 2024;40(12):2077-93. doi: 10.1080/03007995.2024.2414893. PMID: 39432449.

5. Sanjarnia P, Picchio ML, Polegre Solis AN, Schuhladen K, Fliss PM, Politakos N, et al. Bringing innovative wound care polymer materials to the market: challenges, developments, and new trends. Adv Drug Deliv Rev. 2024;207:115217. doi: 10.1016/j.addr.2024.115217. PMID: 38428746.

6. Vidallon SL, Arriola AH. Lista de verificação de samambaias no Monte Mariveles, Bataan, Filipinas. Diversitas J. 2024;9(4):e3134. doi: 10.48017/dj.v9i4.3134. PMID: 39104572.

7. Galope-Obemio CD, Buot IE Jr, Banaticla-Hilario MC. New records of pteridophytes in Mount Matutum Protected Landscape, South Central Mindanao, Philippines with notes on its economic value and conservation status. J Threat Taxa. 2022;14(11):22039-57. doi: 10.11609/jott.7640.14.11.22039-22057. PMID: 36421845.

8. de Villa KR, Lagat RD. Species richness, elevational distribution, and conservation status of ferns and lycophytes in Mts. Palay-Palay Mataas-na-Gulod Protected Landscape, Luzon Island, the Philippines. Plant Sci Today. 2024;11(2):153-62. doi: 10.14719/pst.2686. PMID: 38792456.

9. Delos Angeles MD, Asis AA. Pteridophyte diversity in the Puerto Princesa Subterranean River National Park (PPSRNP), Palawan Island, Philippines. In: Ramamoorthy S, Buot IE Jr, Chandrasekaran R, editors. Plant genetic resources, inventory, collection and conservation. Singapore: Springer Nature; 2022. p. 177-87. doi: 10.1007/978-981-16-7699-4_8. PMID: 35234156.

10. Sagar PK, Alam M, Sajwan S, Khan AS, Meena RP. HPTLC finger printing studies and evaluation of pharmacopoeial standards for the medicinal plant Adiantum capillus-veneris L. J Pharm Res Int. 2022;34(7):1-12. doi: 10.9734/jpri/2022/v34i730A35890. PMID: 35789234.

11. Hooshmand S, Mollazadeh S, Akrami N, Ghanad M, El-Fiqi A, Baino F, et al. Mesoporous silica nanoparticles and mesoporous bioactive glasses for wound management: from skin regeneration to cancer therapy. Materials (Basel). 2021;14(12):3337. doi: 10.3390/ma14123337. PMID: 34203875.

12. Heidari R, Assadollahi V, Shakib Manesh MH, Mirzaei SA, Elahian F. Recent advances in mesoporous silica nanoparticles formulations and drug delivery for wound healing. Int J Pharm. 2024;665:124654. doi: 10.1016/j.ijpharm.2024.124654. PMID: 39270801.

13. Castillo RR, Vallet-Regí M. Recent advances toward the use of mesoporous silica nanoparticles for the treatment of bacterial infections. Int J Nanomedicine. 2021;16:4409-30. doi: 10.2147/IJN.S273064. PMID: 34234431.

14. Vallet-Regí M, Schüth F, Lozano D, Colilla M, Manzano M. Engineering mesoporous silica nanoparticles for drug delivery: where are we after two decades? Chem Soc Rev. 2022;51(13):5365-451. doi: 10.1039/D1CS00659B. PMID: 35666170.

15. Masood A, Maheen S, Khan HU, Shafqat SS, Irshad M, Aslam I, et al. Pharmaco-technical evaluation of statistically formulated and optimized dual drug-loaded silica nanoparticles for improved antifungal efficacy and wound healing. ACS Omega. 2021;6(12):8210-25. doi: 10.1021/acsomega.0c06242. PMID: 33817494.

16. Chen Y, Shi J. Mesoporous carbon biomaterials for targeted drug delivery and cancer therapy. Biomaterials. 2022;287:121661. doi: 10.1016/j.biomaterials.2022.121661. PMID: 35717834.

17. Thakur M, Guleria P, Sobti RC, Gautam A, Kaur T. Comparative analysis of the antibacterial efficacy and bioactive components of Thuja occidentalis obtained from four different geographical sites. Mol Cell Biochem. 2024;479(2):283-96. doi: 10.1007/s11010-023-04729-9. PMID: 37198406.

18. Thakur M, Sobti R, Kaur T. Medicinal and biological potential of Thuja occidentalis: a comprehensive review. Asian Pac J Trop Med. 2023;16(4):148-60. doi: 10.4103/1995-7645.374353. PMID: 37162458.

19. Kwon S, Singh RK, Perez RA, Abou Neel EA, Kim HW, Chrzanowski W. Silica-based mesoporous nanoparticles for controlled drug delivery. J Tissue Eng. 2013;4:2041731413503357. doi: 10.1177/2041731413503357. PMID: 24020026.

20. Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 2021;20(2):101-24. doi: 10.1038/s41573-020-0090-8. PMID: 33277608.

21. Rojek B, Wesolowski M. A combined differential scanning calorimetry and thermogravimetry approach for the effective assessment of drug substance-excipient compatibility. J Therm Anal Calorim. 2023;148(3):845-58. doi: 10.1007/s10973-022-11849-9. PMID: 36531899.

22. Rojek B, Wesolowski M. DSC supported by factor analysis as a reliable tool for compatibility study in pharmaceutical mixtures. J Therm Anal Calorim. 2019;138(6):4531-9. doi: 10.1007/s10973-019-08223-7. PMID: 31892976.

23. Vazquez NI, Gonzalez Z, Ferrari B, Castro Y. Synthesis of mesoporous silica nanoparticles by sol-gel as nanocontainer for future drug delivery applications. Bol Soc Esp Ceram Vidr. 2017;56(3):139-45. doi: 10.1016/j.bsecv.2017.03.002. PMID: 28456321.

24. Qiao ZA, Zhang L, Guo M, Liu Y, Huo Q. Synthesis of mesoporous silica nanoparticles via controlled hydrolysis and condensation of silicon alkoxide. Chem Mater. 2009;21(16):3823-9. doi: 10.1021/cm901335k. PMID: 19687234.

25. Rahmani S, Durand JO, Charnay C, Lichon L, Férid M, Garcia M, et al. Synthesis of mesoporous silica nanoparticles and nanorods: application to doxorubicin delivery. Solid State Sci. 2017;68:25-31. doi: 10.1016/j.solidstatesciences.2017.04.003. PMID: 28453621.

26. Shahzad Y, Khalid SH. Formulation development and optimization of cefixime tablets by response surface methodology. Pak J Pharm Sci. 2019;32(4):1457-65. doi: 10.36721/PJPS.2019.32.4.REG.1457-1465.1. PMID: 31894089.

27. Zhu A, Jiao T, Ali S, Xu Y, Ouyang Q, Chen Q. SERS sensors based on aptamer-gated mesoporous silica nanoparticles for quantitative detection of Staphylococcus aureus with signal molecular release. Anal Chem. 2021;93(28):9788-96. doi: 10.1021/acs.analchem.1c01280. PMID: 34227809.

28. Wagner J, Gößl D, Ustyanovska N, Xiong M, Hauser D, Zhuzhgova O, et al. Mesoporous silica nanoparticles as pH-responsive carrier for the immune-activating drug resiquimod enhance the local immune response in mice. ACS Nano. 2021;15(3):4450-66. doi: 10.1021/acsnano.0c08384. PMID: 33651606.

29. Singh AK, Singh SS, Rathore AS, Singh SP, Mishra G, Awasthi R, et al. Lipid-coated MCM-41 mesoporous silica nanoparticles loaded with berberine improved inhibition of acetylcholine esterase and amyloid formation. ACS Biomater Sci Eng. 2021;7(8):3737-53. doi: 10.1021/acsbiomaterials.1c00514. PMID: 34251804.

30. Paswan SK, Saini TR. Comparative evaluation of in vitro drug release methods employed for nanoparticle drug release studies. Dissolution Technol. 2021;28(2):30-8. doi: 10.14227/DT280421P30. PMID: 34249158.

31. Barman P, Sharma C, Joshi S, Sharma S, Maan M, Rishi P, et al. In vivo acute toxicity and therapeutic potential of a synthetic peptide, DP1 in a Staphylococcus aureus infected murine wound excision model. Probiotics Antimicrob Proteins. 2025;17(2):843-56. doi: 10.1007/s12602-023-10176-1. PMID: 38057578.

32. Gushiken LFS, Beserra FP, Hussni MF, Gonzaga MT, Ribeiro VP, de Souza PF, et al. Beta-caryophyllene as an antioxidant, anti-inflammatory and re-epithelialization activities in a rat skin wound excision model. Oxid Med Cell Longev. 2022;2022:9004014. doi: 10.1155/2022/9004014. PMID: 35799888.

33. González-González O, Ramirez IO, Ramirez BI, O'Connell P, Ballesteros MP, Torrado JJ, et al. Drug stability: ICH versus accelerated predictive stability studies. Pharmaceutics. 2022;14(10):2324. doi: 10.3390/pharmaceutics14102324. PMID: 36297703.

34. Le Berre M, Gerlach JQ, Dziembała I, Kilcoyne M. Calculating half maximal inhibitory concentration (IC50) values from glycomics microarray data using GraphPad Prism. Methods Mol Biol. 2022;2460:89-111. doi: 10.1007/978-1-0716-2148-6_6. PMID: 35507246.

35. Narayan R, Gadag S, Cheruku SP, Raichur AM, Day CM, Garg S, et al. Chitosan-glucuronic acid conjugate coated mesoporous silica nanoparticles: a smart pH-responsive and receptor-targeted system for colorectal cancer therapy. Carbohydr Polym. 2021;261:117893. doi: 10.1016/j.carbpol.2021.117893. PMID: 33766346.

36. Gou K, Wang Y, Guo X, Wang Y, Bian Y, Zhao H, et al. Carboxyl-functionalized mesoporous silica nanoparticles for the controlled delivery of poorly water-soluble non-steroidal anti-inflammatory drugs. Acta Biomater. 2021;134:576-92. doi: 10.1016/j.actbio.2021.07.023. PMID: 34280601.

37. Pham LM, Kim EC, Ou W, Phung CD, Nguyen TT, Pham TT, et al. Targeting and clearance of senescent foamy macrophages and senescent endothelial cells by antibody-functionalized mesoporous silica nanoparticles for alleviating aorta atherosclerosis. Biomaterials. 2021;269:120677. doi: 10.1016/j.biomaterials.2021.120677. PMID: 33609965.

38. Li H, Zhu J, Xu Y, Mou F, Shan X, Wang Q, et al. Notoginsenoside R1-loaded mesoporous silica nanoparticles targeting the site of injury through inflammatory cells improves heart repair after myocardial infarction. Redox Biol. 2022;54:102384. doi: 10.1016/j.redox.2022.102384. PMID: 35717853.

39. Yang Y, Chen F, Xu N, Yao Q, Wang R, Xie X, et al. Red-light-triggered self-destructive mesoporous silica nanoparticles for cascade-amplifying chemo-photodynamic therapy favoring antitumor immune responses. Biomaterials. 2022;281:121368. doi: 10.1016/j.biomaterials.2022.121368. PMID: 35061050.

40. Huang C, Zhang L, Guo Q, Zuo Y, Wang N, Wang H, et al. Robust nanovaccine based on polydopamine-coated mesoporous silica nanoparticles for effective photothermal-immunotherapy against melanoma. Adv Funct Mater. 2021;31(13):2010637. doi: 10.1002/adfm.202010637. PMID: 33854234.

41. Amin MU, Ali S, Ali MY, Tariq I, Nasrullah U, Pinnapreddy SR, et al. Enhanced efficacy and drug delivery with lipid coated mesoporous silica nanoparticles in cancer therapy. Eur J Pharm Biopharm. 2021;165:31-40. doi: 10.1016/j.ejpb.2021.04.020. PMID: 33965599.

42. Zhang T, Liu H, Li L, Guo Z, Song J, Yang X, et al. Leukocyte/platelet hybrid membrane-camouflaged dendritic large pore mesoporous silica nanoparticles co-loaded with photo/chemotherapeutic agents for triple negative breast cancer combination treatment. Bioact Mater. 2021;6(11):3865-78. doi: 10.1016/j.bioactmat.2021.04.004. PMID: 33997497.

43. Zhang Y, Xiong M, Ni X, Wang J, Rong H, Su Y, et al. Virus-mimicking mesoporous silica nanoparticles with an electrically neutral and hydrophilic surface to improve the oral absorption of insulin by breaking through dual barriers of the mucus layer and the intestinal epithelium. ACS Appl Mater Interfaces. 2021;13(15):18077-88. doi: 10.1021/acsami.1c00580. PMID: 33821641.

44. Zhu M, Ou X, Tang J, Shi T, Ma X, Wang Y, et al. Uptake, distribution and translocation of imidacloprid-loaded fluorescence double hollow shell mesoporous silica nanoparticles and metabolism of imidacloprid in pakchoi. Sci Total Environ. 2021;787:147578. doi: 10.1016/j.scitotenv.2021.147578. PMID: 33964772.

45. El-Ashry RM, El-Saadony MT, El-Sobki AEA, El-Tahan AM, Al-Otaibi S, El-Shehawi AM, et al. Biological silicon nanoparticles maximize the efficiency of nematicides against biotic stress induced by Meloidogyne incognita in eggplant. Saudi J Biol Sci. 2022;29(2):920-32. doi: 10.1016/j.sjbs.2021.10.013. PMID: 35197757.

46. Mohamed Isa ED, Ahmad H, Abdul Rahman MB. Optimization of synthesis parameters of mesoporous silica nanoparticles based on ionic liquid by experimental design and its application as a drug delivery agent. J Nanomater. 2019;2019:4982054. doi: 10.1155/2019/4982054. PMID: 31534567.

47. Juneja R, Vadarevu H, Halman J, Tarannum M, Rackley L, Dobbs J, et al. Combination of nucleic acid and mesoporous silica nanoparticles: optimization and therapeutic performance in vitro. In: Therapeutic RNA nanotechnology. Singapore: Jenny Stanford Publishing; 2021. p. 245-78. doi: 10.1201/9781003109198-10. PMID: 34582145.

48. Saputra OA, Wibowo FR, Lestari WW. High storage capacity of curcumin loaded onto hollow mesoporous silica nanoparticles prepared via improved hard-templating method optimized by Taguchi DoE. Eng Sci Technol Int J. 2022;33:101070. doi: 10.1016/j.jestch.2021.10.002. PMID: 34891256.

49. Agi A, Junin R, Zaidi Jaafar M, Aishah Saidina Amin N, Akhmal Sidek M, Yakasai F, et al. Process optimization of reservoir fines trapping by mesoporous silica nanoparticles using Box-Behnken design. Alex Eng J. 2022;61(11):8809-21. doi: 10.1016/j.aej.2022.02.016. PMID: 35432987.

50. Arantes TM, Pinto AH, Leite ER, Longo E, Camargo ER. Synthesis and optimization of colloidal silica nanoparticles and their functionalization with methacrylic acid. Colloids Surf A Physicochem Eng Asp. 2012;415:209-17. doi: 10.1016/j.colsurfa.2012.09.041. PMID: 23012456.

51. Khalbas AH, Albayati TM, Saady NMC, Zendehboudi S, Salih IK, Tofah ML. Insights into drug loading techniques with mesoporous silica nanoparticles: optimization of operating conditions and assessment of drug stability. J Drug Deliv Sci Technol. 2024;96:105698. doi: 10.1016/j.jddst.2024.105698. PMID: 38734521.

52. Mansor AF, Mohidem NA, Wan Mohd Zawawi WNI, Othman NS, Endud S, Mat H. The optimization of synthesis conditions for laccase entrapment in mesoporous silica microparticles by response surface methodology. Microporous Mesoporous Mater. 2016;220:308-14. doi: 10.1016/j.micromeso.2015.08.014. PMID: 26432187.

53. Zhang Z, Mayoral A, Melián-Cabrera I. Protocol optimization for the mild detemplation of mesoporous silica nanoparticles resulting in enhanced texture and colloidal stability. Microporous Mesoporous Mater. 2016;220:110-9. doi: 10.1016/j.micromeso.2015.08.026. PMID: 26531245.

54. Baliś A, Zapotoczny S. Tailored synthesis of core-shell mesoporous silica particles—optimization of dye sorption properties. Nanomaterials (Basel). 2018;8(4):230. doi: 10.3390/nano8040230. PMID: 29621137.

55. Lestari WA, Saputra OA, Díaz-García D, Wahyuningsih S, Gómez-Ruiz S, Wibowo FR. Design of experiments as a strategy for modulating the colloidal stability, physico-chemical properties and drug-delivery potential of small mesoporous silica nanoparticles. Adv Powder Technol. 2023;34(8):104191. doi: 10.1016/j.apt.2023.104191. PMID: 37345678.

56. Kittappa S, Cui M, Ramalingam M, Ibrahim S, Khim J, Yoon Y, et al. Synthesis mechanism and thermal optimization of an economical mesoporous material using silica: implications for the effective removal or delivery of ibuprofen. PLoS One. 2015;10(6):e0130253. doi: 10.1371/journal.pone.0130253. PMID: 26086349.

Published

08-12-2025

How to Cite

PAGAR, S. A., & THOMBRE, N. A. (2025). DEVELOPMENT AND OPTIMIZATION OF MESOPOROUS SILICA NANOPARTICLES LOADED WITH ADIANTUM PHILIPPINES FRACTION AND THUJA OIL AS A POTENTIAL WOUND HEALING AGENT. International Journal of Applied Pharmaceutics, 18(1). https://doi.org/10.22159/ijap.2026v18i1.55787

Issue

Section

Original Article(s)

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.