TRANSDERMAL SOLID LIPID NANOPARTICLES OF CLOMIPHENE CITRATE FOR ENHANCED PCOS TREATMENT

Authors

  • FORAM BHATT Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Parul University, Vadodara, Gujarat-391760, India https://orcid.org/0000-0003-1272-2003
  • DIPTI PATEL Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Parul University, Vadodara, Gujarat-391760, India https://orcid.org/0000-0002-3216-2907

DOI:

https://doi.org/10.22159/ijap.2026v18i1.55917

Keywords:

Nanoparticles, Clomiphene citrate, Box–behnken design, Optimizing SLN, Particle size, Transdermal drug delivery system

Abstract

Objective: To develop and evaluate a novel dissolving microneedle patch containing clomiphene citrate‑loaded solid lipid nanoparticles (CC‑SLNs), aiming to enable sustained transdermal drug delivery for PCOS treatment, enhance therapeutic effectiveness, and reduce side effects linked to oral administration.

Methods: CC‑SLNs were formulated using hot homogenization and ultrasonication and optimized via a Box–Behnken design targeting ideal particle size, entrapment efficiency, drug loading, and zeta potential. Microneedle patches were fabricated from biocompatible polymers (polyvinyl alcohol, polyvinylpyrrolidone, polyethylene glycol 400), featuring ~915 µm-high needles for effective dermal penetration. In vitro characterization assessed patch thickness, folding endurance (~300 folds), moisture uptake, and drug release kinetics. Ex vivo release studies were performed on human skin models. For in vivo evaluation, female Wistar rats were randomly assigned to control (saline), oral CC, or CC‑SLN microneedle patch groups (n = 6 each). Skin irritation (erythema and edema) was monitored at 1, 24, 48, and 72 hours post-application, and at 72 hours blood samples were collected for LH, FSH, and insulin resistance evaluation. Skin biopsies were obtained for histopathological analysis.

Results: SLN components were selected based on Particle size (242±11 nm), Zetapotential (25.6±0.9 mv) and PDI (0.24±0.02). Regression analysis was performedusnig design experts which displays the significance of p-value Optimized batch was selected by point predictionand Batch No. 17 was selected. SEMstudy confirmed uniform and structurally. In vitro and ex vivo release studies demonstrated sustained drug release (~89% over 5 days in vitro; ~78% ex vivo). In vivo, the CCSLN patch delivered prolonged systemic activity, minimized hormonal fluctuations, and showed significantly reduced skin irritation and histopathological changes compared to oral administration.

Conclusion: The developed CC‑SLN microneedle patch represents a promising transdermal approach for PCOS management. It delivers clomiphene citrate in a controlled and sustained manner, enhances treatment efficacy, and offers superior safety and tolerability relative to conventional oral therapy, based on pharmacodynamics, hormonal profiles, and dermal safety in a rat model.

References

1. Patel N, Shaker IA, Patel K. Harnessing the power of G-protein coupled receptor-120 in redefining insulin resistance and inflammation management in polycystic ovary syndrome. AJPCR. 2025;143-146.URL: https://www.journals.innovareacademics.in/index.php/ajpcr/article/view/54774

2. Monisha MM, Prakash M. Targeting polycystic ovarian syndrome inflammation: docking and phytochemical profiling of anti-inflammatory compounds in Leonotis nepetifolia. AJPCR. 2025;168-175.URL: https://journals.innovareacademics.in/index.php/ajpcr/article/view/54487

3. Bhatt F, Patel D. Fabrication and screening of solid lipid nanoparticles-loaded microneedle patch for polycystic ovary syndrome treatment. AJPCR. 2025;109-114.URL:https://journals.innovareacademics.in/index.php/ajpcr/article/view/54740

4. Rittmaster RS. Antiandrogen treatment of polycystic ovary syndrome. Endocrinol Metab Clin North Am. 1999;28(2):409-421.URL: https://www.sciencedirect.com/science/article/abs/pii/S0889852905700773

5. Mumford SL, Steiner AZ, Pollack AZ, Perkins NJ, Filiberto AC, Albert PS, et al. The utility of menstrual cycle length as an indicator of cumulative hormonal exposure. J Clin Endocrinol Metab. 2012;97(11):E1871-E1879.URL: https://pubmed.ncbi.nlm.nih.gov/33627974/

6. Deswal R, Narwal V, Dang A, Pundir CS. The prevalence of polycystic ovary syndrome: a brief systematic review. J Hum Reprod Sci. 2020;13(3):261-271. URL: https://pubmed.ncbi.nlm.nih.gov/33627974/

7. Yilmaz EG, Ece E, Erdem Ö, Eş I, Inci F. A sustainable solution to skin diseases: eco-friendly transdermal patches. Pharmaceutics. 2023;15(2):579.URL: https://doi.org/10.3390/pharmaceutics15020579

8. Guillot AJ, Martínez-Navarrete M, Garrigues TM, Melero A. Skin drug delivery using lipid vesicles: a starting guideline for their development. J Control Release. 2023;355:624-654.DOI:10.1016/j.jconrel.2023.02.006URL https://pubmed.ncbi.nlm.nih.gov/36775245/

9. Guillot AJ, Jornet-Mollá E, Landsberg N, Milián-Guimerá C, Montesinos MC, Garrigues TM, et al. Cyanocobalamin ultraflexible lipid vesicles: characterization and in vitro evaluation of drug-skin depth profiles. Pharmaceutics. 2021;13(3):418.DOI10.3390/pharmaceutics13030418,URLhttps://www.mdpi.com/1999-4923/13/3/418

10. Panwar P, Pandey B, Lakhera PC, Singh KP. Preparation, characterization, and in vitro release study of albendazole-encapsulated nanosize liposomes. Int J Nanomedicine. 2010;5:101-108.URL: https://pubmed.ncbi.nlm.nih.gov/20309396/

11. Keller S, Heerklotz H, Jahnke N, Blume A. Thermodynamics of lipid membrane solubilization by sodium dodecyl sulfate. Biophys J. 2006;90(12):4509-4521.URL: https://pubmed.ncbi.nlm.nih.gov/16581838/

12. Hernández-Borrell J, Pons M, Juarez JC, Estelrich J. The action of Triton X-100 and sodium dodecyl sulphate on lipid layers. Effect on monolayers and liposomes. J Microencapsul. 1990;7(2):255-259.DOI: 10.3109/02652049009021838.

13. Igarashi T, Shoji Y, Katayama K. Anomalous solubilization behavior of dimyristoylphosphatidylcholine liposomes induced by sodium dodecyl sulfate micelles. Anal Sci. 2012;28(4):345-350.URL: https://pubmed.ncbi.nlm.nih.gov/22498460/

14. Permana AD, Tekko IA, McCrudden MTC, Anjani QK, Ramadon D, McCarthy HO, et al. Solid lipid nanoparticle-based dissolving microneedles: a promising intradermal lymph targeting drug delivery system with potential for enhanced treatment of lymphatic filariasis. J Control Release. 2019;316:34-52.DOI: https://doi.org/10.1016/j.jconrel.2019.10.004

15. Todo H. Transdermal permeation of drugs in various animal species. Pharmaceutics. 2017;9(3):E33.URL: https://www.mdpi.com/1999-4923/9/3/33

16. Ng SF, Rouse JJ, Sanderson FD, Meidan V, Eccleston GM. Validation of a static Franz diffusion cell system for in vitro permeation studies. AAPS PharmSciTech. 2010;11(4):1432-1441.URL:https://pmc.ncbi.nlm.nih.gov/articles/PMC2974154/

17. Carreras JJ, Tapia-Ramirez WE, Sala A, Guillot AJ, Garrigues TM, Melero A. Ultraflexible lipid vesicles allow topical absorption of cyclosporin A. Drug Deliv Transl Res. 2020;10(2):486-497.URL: https://pubmed.ncbi.nlm.nih.gov/31811620/

18. Miranda M, Cardoso C, Vitorino C. Fast screening methods for the analysis of topical drug products. Processes. 2020;8(4):397.DOI: https://doi.org/10.3390/pr8040397

19. Danaei M, Dehghankhold M, Ataei S, Hasanzadeh-Davarani F, Javanmard R, Dokhani A, et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 2018;10(2):E57. DOI: https://doi.org/10.3390/pharmaceutics10020057

20. Ahad A, Al-Saleh AA, Al-Mohizea AM, Al-Jenoobi FI, Raish M, Yassin AE, et al. Formulation and characterization of novel soft nanovesicles for enhanced transdermal delivery of eprosartan mesylate. Saudi Pharm J. 2017;25(7):1040-1046.URL: https://pubmed.ncbi.nlm.nih.gov/29158713/?utm_source

21. Ahad A, Al-Saleh AA, Al-Mohizea AM, Al-Jenoobi FI, Raish M, Yassin AE, et al. Formulation and characterization of Phospholipon 90 G and Tween 80 based transfersomes for transdermal delivery of eprosartan mesylate. Pharm Dev Technol. 2018;23(8):787-793.URL: https://pubmed.ncbi.nlm.nih.gov/28504046/

22. Gbian DL, Omri A. Lipid-based drug delivery systems for disease managements. Biomedicines. 2022;10(9):2137.URL: https://www.mdpi.com/2227-9059/10/9/2137/

23. Teodorescu M, Bercea M, Morariu S. Biomaterials of PVA and PVP in medical and pharmaceutical applications: perspectives and challenges. Biotechnol Adv. 2019;37(1):109-131.DOI: https://doi.org/10.1016/j.biotechadv.2018.11.008

24. Dawud H, Abu Ammar A. Rapidly dissolving microneedles for the delivery of steroid-loaded nanoparticles intended for the treatment of inflammatory skin diseases. Pharmaceutics. 2023;15(2):526. https://www.mdpi.com/1999-4923/15/2/526/

25. Ritger PL, Peppas NA. A simple equation for description of solute release I. Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J Control Release. 1987;5(1):23-36. URL: https://www.sciencedirect.com/science/article/pii/0168365987900344/

26. Chourasia MK, Kang L, Chan SY. Nanosized ethosomes bearing ketoprofen for improved transdermal delivery. Results Pharma Sci. 2011;1(1):60-67.URL:https://www.sciencedirect.com/science/article/pii/S2211286311000121/

27. Zhang YT, Shen LN, Wu ZH, Zhao JH, Feng NP. Comparison of ethosomes and liposomes for skin delivery of psoralen for psoriasis therapy. Int J Pharm. 2014;471(1-2):449-452. URL: https://pubmed.ncbi.nlm.nih.gov/24907596/

28. Miranda M, Volmer Z, Cornick A, Goody A, Cardoso C, Pais AA, et al. In vitro studies into establishing therapeutic bioequivalence of complex topical products: Weight of evidence. Int J Pharm. 2024;656:124012.URL: https://www.sciencedirect.com/science/article/pii/S0378517324002461

29. Matalliotakis I, Kourtis A, Koukoura O, Panidis D. Polycystic ovary syndrome: etiology and pathogenesis. Arch Gynecol Obstet. 2006;274(4):187-197.URL: https://pubmed.ncbi.nlm.nih.gov/16685527/

30. Jiang D. TCM treatment of polycystic ovary and PCOS. J Complement Med Alt Healthc. 2017;2(5):555-578. URL: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://juniperpublishers.com/jcmah/pdf/JCMAH.MS.ID.555578.pdf

31. Barber TM, McCarthy MI, Wass JAH, Franks S. Obesity and polycystic ovary syndrome. Clin Endocrinol (Oxf). 2006;65(2):137-145. URL: https://onlinelibrary.wiley.com/doi/full/10.1111/j.1365-2265.2006.02587.x

32. Motta AB. The role of obesity in the development of polycystic ovary syndrome. Curr Pharm Des. 2012;18(17):2482-2491.URL: https://www.researchgate.net/publication/221872006_The_Role_of_Obesity_in_the_Development_of_Polycystic_Ovary_Syndrome?utm

33. Dahan MH, Reaven G. Relationship among obesity, insulin resistance, and hyperinsulinemia in the polycystic ovary syndrome. Endocrine. 2019;64(3):685-689.URL: https://pubmed.ncbi.nlm.nih.gov/30900204/

34. Isikoglu M, Berkkanoglu M, Cemal H, Ozgur K. Polycystic ovary syndrome: What is the role of obesity. In: Polycystic Ovary Syndrome. Kent (UK): Anshan, Ltd; 2007. p 157-163.ISBN-10: 1904798748

35. Peigné M, Dewailly D. Long term complications of polycystic ovary syndrome (PCOS). Ann Endocrinol (Paris). 2014;75(3-4):194-199.DOI: 10.1016/j.ando.2014.07.111 PubMed

URL:https://pubmed.ncbi.nlm.nih.gov/25156132/

36. Palomba S, Santagni S, Falbo A, La Sala GB. Complications and challenges associated with polycystic ovary syndrome: current perspectives. Int J Womens Health. 2015;7:745-763.DOI: 10.2147/IJWH.S70314,URLhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4527566/

37. Mukherjee P, Sanyal S, Chadha S, Mukherjee S. The impact of polycystic ovary syndrome (PCOS) on the risk of developing ovarian cancer and thyroid disorders: a comprehensive review. Endoc Metab Immune Disord Drug Targets. 2024;24(3):562-572.DOI: 10.2174/1871530325666231129103302 PubMedURL: https://pubmed.ncbi.nlm.nih.gov/37986267/

38. Tsilchorozidou T, Overton C, Conway GS. The pathophysiology of polycystic ovary syndrome. Clin Endocrinol (Oxf). 2004;60(1):1-17.DOI: 10.1046/j.1365-2265.2003.01842.x PubMed+1

URL:https://pubmed.ncbi.nlm.nih.gov/14678281/

39. Liao B, Qiao J, Pang Y. Central regulation of PCOS: abnormal neuronal-reproductive-metabolic circuits in PCOS pathophysiology. Front Endocrinol (Lausanne). 2021;12:667422.•DOI: 10.3389/fendo.2021.667422 OUCI+2PubMed+2

40. URL: https://www.frontiersin.org/articles/10.3389/fendo.2021.667422/full

41. Walters KA, Moreno-Asso A, Stepto NK, Pankhurst MW, Paris VR, Rodgers RJ. Key signalling pathways underlying the aetiology of polycystic ovary syndrome. J Endocrinol. 2022;255(2):R1-R26.URL https://pubmed.ncbi.nlm.nih.gov/35980384/

42. Bao SH, Sheng SL, Peng YF, Lin QD. Effects of letrozole and clomiphene citrate on the expression of HOXA10 and integrin αvβ3 in uterine epithelium of rats. Fertil Steril. 2009;91(1):244-248.DOI10.1016/j.fertnstert.2007.11.024, URLhttps://pubmed.ncbi.nlm.nih.gov/18249394/

43. Omran E, El-Sharkawy M, El-Mazny A, Hammam M, Ramadan W, Latif D, et al. Effect of clomiphene citrate on uterine hemodynamics in women with unexplained infertility. Int J Womens Health. 2018;10:147-152.DOI 10.2147/IJWH.S155335URL https://pubmed.ncbi.nlm.nih.gov/29670406/

44. Mehdinejadiani S, Amidi F, Mehdizadeh M, Barati M, Pazhohan A, Alyasin A, et al. Effects of letrozole and clomiphene citrate on Wnt signaling pathway in endometrium of polycystic ovarian syndrome and healthy women. Biol Reprod. 2018;100(3):641-648.DOI 10.1093/biolre/ioy187

45. Salam EA, Essam ME, ElSawy NA. Effect of clomiphene citrate on the ovary of adult rat. JOKULL. 2015;65(12):26-44.https://pubmed.ncbi.nlm.nih.gov/3661117/

46. Barnes LE, Meyer RK. Effects of ethamoxytriphetol, MRL-37, and clomiphene on reproduction in rats. Fertil Steril. 1962;13(5):472-480.https://doi.org/10.1016/S0015-0282(16)34632-5

47. Gadalla MA, Huang S, Wang R, Norman RJ, Abdullah SA, El Saman AM, et al. Effect of clomiphene citrate on endometrial thickness, ovulation, pregnancy and live birth in anovulatory women: systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2018;51(1):64-76.•DOI: 10.1002/uog.18933PubMedURL: https://pubmed.ncbi.nlm.nih.gov/29055102/

48. Tavaniotou A, Albano C, Smitz J, Devroey P. Effect of clomiphene citrate on follicular and luteal phase luteinizing hormone concentrations in in vitro fertilization cycles stimulated with gonadotropins and gonadotropin-releasing hormone antagonist. Fertil Steril. 2002;77(4):733-737.•DOI: 10.1016/S0015-0282(01)03265-4PubMedURL: https://pubmed.ncbi.nlm.nih.gov/11937125/

49. MacDougall MJ, Tan S-L, Hall V, Balen A, Mason BA, Jacobs HS. Comparison of natural with clomiphene citrate-stimulated cycles in in vitro fertilization: a prospective, randomized trial. Fertil Steril. 1994;61(6):1052-1057.DOI10.1016/S0015-0282(16)65675-7,URLhttps://pubmed.ncbi.nlm.nih.gov/8194616/

50. Ochin H, Ma X, Wang L, Li X, Song J, Meng Y, et al. Low dose clomiphene citrate as a mild stimulation protocol in women with unsuspected poor in vitro fertilization result can generate more oocytes with optimal cumulative pregnancy rate. J Ovarian Res. 2018;11(1):1.DOI 10.1186/s13048-018-0408-x, URLhttps://ovarianresearch.biomedcentral.com/articles/10.1186/s13048-018-0408-x

51. Branigan EF, Estes MA. Minimal stimulation IVF using clomiphene citrate and oral contraceptive pill pretreatment for LH suppression. Fertil Steril. 2000;73(3):587-590.DOI10.1016/S0015-0282(99)00584-1, URLhttps://pubmed.ncbi.nlm.nih.gov/10689017/

52. Al-Inany H, Azab H, El-Khayat W, Nada A, El-Khattan E, Abou-Setta AM. The effectiveness of clomiphene citrate in LH surge suppression in women undergoing IUI: a randomized controlled trial. Fertil Steril. 2010;94(6):2167-2171.DOI: 10.1016/j.fertnstert.2010.01.069FertSterT+1URL: https://www.sciencedirect.com/science/article/pii/S0015028210001445

53. El Sherry TM, Derar D, Hussein HA, Shahin AY, Fahmy S. Effect of clomiphene citrate on follicular recruitment, development, and superovulation during the first follicular wave in Rahmani ewes. Int J Endocrinol Metab. 2011;9(3):403-408.•DOI: 10.5812/Kowsar.1726913X.2381ResearchGate+1URL: https://doi.org/10.5812/Kowsar.1726913X.2381

54. Bukhari SAA, Ali S, Zubair M, Ahmad I, Rehman UU. Effect of clomiphene citrate and human chorionic gonadotropin (hCG) on ovulation induction in prepubertal Sahiwal heifers. Asian Pac J Reprod. 2016;5(3):232-235.•DOI: 10.1016/j.apjr.2016.04.010ResearchGate,URL: https://www.sciencedirect.com/science/article/pii/S2305050016300483

55. Mulabagal V, Annaji M, Kurapati S, Dash RP, Srinivas NR, Tiwari AK, et al. Stability-indicating HPLC method for acyclovir and lidocaine in topical formulations. Biomed Chromatogr. 2020;34(3):e4751.DOI10.1002/bmc.4751, URLhttps://pubmed.ncbi.nlm.nih.gov/31756271/

56. Loftsson T, Brewster ME. Pharmaceutical applications of cyclodextrins: basic science and product development. J Pharm Pharmacol. 2010;62(11):1607-1621.DOI10.1111/j.2042-7158.2010.01030.x,URLhttps://pubmed.ncbi.nlm.nih.gov/21039545/

57. Shelley H, Babu RJ. Role of cyclodextrins in nanoparticle-based drug delivery systems. J Pharm Sci. 2018;107(7):1741-1753.DOI 10.1016/j.xphs.2018.03.021, URLhttps://pubmed.ncbi.nlm.nih.gov/29625157/

Published

29-10-2025

How to Cite

BHATT, F., & PATEL, D. (2025). TRANSDERMAL SOLID LIPID NANOPARTICLES OF CLOMIPHENE CITRATE FOR ENHANCED PCOS TREATMENT. International Journal of Applied Pharmaceutics, 18(1). https://doi.org/10.22159/ijap.2026v18i1.55917

Issue

Section

Original Article(s)

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.