MIXED POLYMERIC NANOMICELLES LOADED WITH MECLIZINE HYDROCHLORIDE: PREPARATION AND CHARACTERIZATION

Authors

DOI:

https://doi.org/10.22159/ijap.2025v17i6.55932

Keywords:

Meclizine hydrochloride, TPGS, Soluplus®, Nanomicelles, Tween 80, Drug delivery

Abstract

Objective: The goal of this study was to make meclizine hydrochloride (MLZ) into nanomicelles using soluplus®® with TPGS or Tween 80 to make MLZ more soluble and easier to absorb when taken by mouth.

Methods: The maximum absorbance wavelength of MLZ was found, and calibration curves were made in both methanol and phosphate buffer pH 6.8 with 0.25% sodium lauryl sulfate (SLS). Nanomicelles were made by directly dissolving soluplus®® with either TPGS or Tween 80. The selected formulations were examined to determine particle size (PS), polydispersity index (PDI), zeta potential, drug content, dissolution rate, drug trapping efficiency, drug loading and in vitro drug release. Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and field emission scanning electron microscopy (FESEM) were used to study the best formulation, F17, further (soluplus®: Tween 80 = 50:25).

Results: The best formula was F17, which had a PZ of 57.75±1.0 nm, a PDI of 0.086±0.006, an EE% of 98.88±0.5%, a zeta potential of+3.90±0.18, a solubility factor of 7.56±0.12 mg/ml, drug content of 98.59%±0.28, drug loading of 24.86±0.11, and a 90 min release rate of 94%. The One-Way ANOVA test showed that there were statistically significant impacts on EE% (p<0.05), but not on PS (p>0.05). PDI did not exhibit any significant results (p>0.05). Stability tests of the best formula indicated that the PS and EE% stayed pretty consistent for at least three months.

Conclusion: Nanomicelles are effective carriers for enhancing the solubility of MLZ in the mouth, thereby increasing its availability to the body. Nanomicelles have a flawless dissolving profile, which makes them an attractive option for use in pharmaceuticals.

References

1. Bose A, Roy Burman D, Sikdar B, Patra P. Nanomicelles: types properties and applications in drug delivery. IET Nanobiotechnology. 2021 Feb;15(1):19-27. doi: 10.1049/nbt2.12018, PMID 34694727.

2. Attia MS, Elshahat A, Hamdy A, Fathi AM, Emad Eldin M, Ghazy FE. Soluplus® as a solubilizing excipient for poorly water-soluble drugs: recent advances in formulation strategies and pharmaceutical product features. J Drug Deliv Sci Technol. 2023 Nov;84:104519. doi: 10.1016/j.jddst.2023.104519.

3. Liu Y, Li L, Sun H, Zhao S, Ma C, Qu Z. TPGS-based nanocarriers for enhancing oral bioavailability: mechanisms and applications. J Control Release. 2023 Jan;350:120-32. doi: 10.1016/j.jconrel.2022.12.030.

4. Wang H, Sun X, Zhao J, Yang L, Li L, Han X. Surfactant-assisted nanocarriers in oral drug delivery: recent advances and challenges. J Control Release. 2023 Feb;351:90-105. doi: 10.1016/j.jconrel.2022.12.044.

5. Rao GS, Kumar A, Rani G, Reddy PR, Goud YP. QbD-based Eudragit-coated meclizine HCl immediate and extended release pellet formulations. J Drug Deliv Sci Technol. 2020 Dec;60:102081. doi: 10.1016/j.jddst.2020.102081.

6. Kalyani V, Rao NR, Prathyusha P. Liquisolid compact of meclizine hydrochloride. Int J Appl Pharm. 2025;17(3):88-94. doi: 10.22159/ijap.2025v17i3.51805.

7. Patel D, Sawant KK. Soluplus-based polymeric micelles of curcumin: formulation optimization, physicochemical characterization and cytotoxicity studies. Drug Dev Ind Pharm. 2021;47(2):276-87. doi: 10.1080/03639045.2020.1866026.

8. Sharma D, Maheshwari D, Philip G, Rana R. Formulation and optimization of polymeric micelles for oral delivery of poorly water-soluble drugs: a comparative study of TPGS and Tween 80. J Drug Deliv Sci Technol. 2020 Sep;59:101909. doi: 10.1016/j.jddst.2020.101909.

9. Sutrisno H, Handayani R, Wibowo D, Dewanti ID, Pratama E, Nugraheni R. Synthesis, characterization and optimization of biodegradable PCL-PEG-PCL triblock copolymeric micelles as nanocarriers for hydrophobic drug solubility enhancer. Int J Curr Pharm Res. 2019;11(4):125-32. doi: 10.22159/ijcpr.2019v11i4.34872.

10. Malekhosseini S, Rezaie A, Khaledian S, Abdoli M, Zangeneh MM, Hosseini A. Fabrication and characterization of hydrocortisone-loaded dextran-poly lactic-co-glycolic acid micelle. Heliyon. 2020;6(5):e03975. doi: 10.1016/j.heliyon.2020.e03975, PMID 32455174.

11. Xia HJ, Zhang ZH, Jin X, Hu Q, Chen XY, Jia XB. A novel drug phospholipid complex enriched with micelles: preparation and evaluation in vitro and in vivo. Int J Nanomedicine. 2013;S38584:545-54. doi: 10.2147/IJN.S39526.

12. Keshari P, Sonar Y, Mahajan H. Curcumin-loaded TPGS micelles for nose to brain drug delivery: in vitro and in vivo studies. Materials Technology. 2019;34(7):423-32. doi: 10.1080/10667857.2019.1575535.

13. Rao GS, Kumar A, Rani G, Reddy PR, Goud YP. QbD-based Eudragit-coated meclizine HCl immediate and extended release pellet formulations. J Drug Deliv Sci Technol. 2020 Dec;60:102081. doi: 10.1016/j.jddst.2020.102081.

14. Hamzah ML, Kassab HJ. Formulation and characterization of intranasal drug delivery of frovatriptan-loaded binary ethosomes gel for brain targeting. Nanotechnol Sci Appl. 2024 Jan 16;17:1-19. doi: 10.2147/NSA.S442951, PMID 38249545.

15. Abdulqader AA, Rajab NA. Preparation and characterization of posaconazole nano-micelles using d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS). Iraqi J Pharm Sci. 2023;32(5):26-32. doi: 10.31351/vol32issSuppl.pp26-32.

16. Jassem NA, Abd Alhammid SN. Formulation and evaluation of canagliflozin self-nanomicellizing solid dispersion based on rebaudioside a for dissolution and solubility improvement. Iraqi J Pharm Sci. 2024;33 4 Suppl 1:43-56. doi: 10.31351/vol33iss(4SI)pp43-56.

17. Al Edhari GH, Al Gawhari FJ. Study the effect of formulation variables on preparation of nisoldipine-loaded nano bilosomes. IJPS. 2023;32Suppl:271-82. doi: 10.31351/vol32issSuppl.pp271-282.

18. Aldabbagh M, Baker F Abdallaha, Nibras Y Abdulla, Ibraheem J Ibraheem. Synthesis, characterization and anticancer activity of chitosan Schiff Base / PEG blend doped with gold and silver nanoparticles in treatment of breast cancer cell line MCF-7. IJPS. 2024;33(2):101-11. doi: 10.31351/vol33iss2pp101-111.

19. Abbas IK, Rajab NA, Hussein AA. Formulation and in vitro evaluation of darifenacin hydrobromide as buccal films. Iraqi J Pharm Sci. 2019;28(2):83-94. doi: 10.31351/vol28iss2pp83-94.

20. Kumar Y, Sharma R. UV spectrophotometric method development and validation of meclizine HCl in bulk and pharmaceutical dosage form. Asian J Pharm Clin Res. 2020;13(7):123-6. doi: 10.22159/ajpcr.2020.v13i7.37965.

21. Al Wiswasi N, Fatima J, Al Gawahri. Brimonidine soluplus nanomicelles: preparation and in vitro evaluation. Iraqi J Pharm Sci. 2025;34(1):246-55. doi: 10.31351/vol34iss1pp246-255.

22. Sulaiman HT. Soluplus and solutol HS-15 olmesartan medoxomil nanomicelle-based oral fast-dissolving film: in vitro and in vivo characterization. Farmacia. 2024;72(4):794-804. doi: 10.31925/farmacia.2024.4.7.

23. Ji S, Lin X, Yu E, Dian C, Yan X, Li L. Curcumin loaded mixed micelles: preparation characterization and in vitro antitumor activity. J Nanotechnol. 2018 Mar;2018(1):1-9. doi: 10.1155/2018/9103120.

24. Ahmed K, Kassab H. Evaluation of nanomicelles loaded with spironolactone. Iraqi J Pharm Sci. 2025;33(3):1130-41.

25. Ali R, Qamar W, Kalam MA, Binkhathlan Z. Soluplus-TPGS mixed micelles as a delivery system for brigatinib: characterization and in vitro evaluation. ACS Omega. 2024;9(40):41830-40. doi: 10.1021/acsomega.4c06264, PMID 39398132.

26. Poojar B, Ommurugan B, Adiga S, Thomas H, Sori RK, Maryam G. Methodology used in the study. Asian J Pharm Clin Res. 2017;10(7):1-5. doi: 10.22159/ajpcr.2017.v10i7.17364.

27. Guembe Michel N, Nguewa P, Gonzalez Gaitano G. Soluplus® based pharmaceutical formulations: recent advances in drug delivery and biomedical applications. Int J Mol Sci. 2025;26(4):1499. doi: 10.3390/ijms26041499, PMID 40003966.

28. Shakiba E, Khazaei S, Hajialyani M, Astinchap B, Fattahi A. Preparation and in vitro characterization of retinoic acid-loaded poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) micelles. Res Pharm Sci. 2017;12(6):465-78. doi: 10.4103/1735-5362.217427, PMID 29204175.

29. Malkawi A, Alrabadi N, Kennedy RA. Dual-acting zeta-potential changing micelles for optimal mucus diffusion and enhanced cellular uptake after oral delivery. Pharmaceutics. 2021;13(7):974. doi: 10.3390/pharmaceutics13070974, PMID 34199091.

30. Kumar A, Jain A, Yadav PK, Singhai AK. Development of oro-dispersible tablet of meclizine by using different super-disintegrating agents. J Drug Delivery Ther. 2022;12(4):7-14. doi: 10.22270/jddt.v12i4.5413.

31. Qazi F, Shoaib MH, Yousuf RI, Nasiri MI, Ahmed K, Ahmad M. Lipids bearing extruded spheronized pellets for extended release of poorly soluble antiemetic agent-meclizine HCl. Lipids Health Dis. 2017;16(1):75. doi: 10.1186/s12944-017-0466-x, PMID 28403892.

32. Alwan RM, Rajab NA. Nanosuspensions of selexipag: formulation characterization and in vitro evaluation. Iraqi J Pharm Sci. 2021;30(1):144-53. doi: 10.31351/vol30iss1pp144-153.

33. Nandi U, Ajiboye AL, Patel P, Douroumis D, Trivedi V. Preparation of solid dispersions of simvastatin and soluplus using a single-step organic solvent-free supercritical fluid process for the drug solubility and dissolution rate enhancement. Pharmaceuticals (Basel). 2021;14(9):846. doi: 10.3390/ph14090846, PMID 34577546.

34. Simoes A, Ramos A, Domingues F, Luis A. Pullulan tween 40 emulsified films containing geraniol: production and characterization as potential food packaging materials. Eur Food Res Technol. 2024;250(6):1721-32. doi: 10.1007/s00217-024-04514-y.

35. Blake D, Gazzara MR, Breuer I, Ferretti M, Lynch KW. Alternative 3′UTR expression induced by T cell activation is regulated in a temporal and signal-dependent manner. Sci Rep. 2024;14(1):10987. doi: 10.1038/s41598-024-61951-1, PMID 38745101.

36. Barot T, Nagula K, Patel M, Patel LD. Liquisolid compact of meclizine hydrochloride: development and optimization using factorial design. Int J App Pharm. 2025;17(2):259-67. doi: 10.22159/ijap.2025v17i2.53361.

37. Shen D, Jin T, Xiao Y, Zhu X, Hua Y. Preparation of pazopanib-fumarate disodium glycyrrhizinate nanocrystalline micelles by liquid-assisted ball milling. Eur J Pharm Sci. 2023;188:106530. doi: 10.1016/j.ejps.2023.106530, PMID 37459902.

Published

07-11-2025

How to Cite

OMAR, H. K., & ALHAMMID, S. N. A. (2025). MIXED POLYMERIC NANOMICELLES LOADED WITH MECLIZINE HYDROCHLORIDE: PREPARATION AND CHARACTERIZATION. International Journal of Applied Pharmaceutics, 17(6), 344–353. https://doi.org/10.22159/ijap.2025v17i6.55932

Issue

Section

Original Article(s)

Similar Articles

<< < 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.