REGULATORY AND FUNCTIONAL FRONTIERS IN PRECISION ONCOLOGY

Authors

  • VIVEK REDDY MURTHANNAGARI Department of Regulatory Affairs, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India https://orcid.org/0000-0002-9077-9657
  • KARUNAKARAN MOORTHY Department of Regulatory Affairs, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India https://orcid.org/0009-0005-1318-1693
  • SYED SUHAIB AHMED Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka-575018, India https://orcid.org/0000-0002-0290-2003
  • INAMUL HASAN MADAR Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, Karnataka-575018, India https://orcid.org/0000-0002-6913-1776

DOI:

https://doi.org/10.22159/ijap.2026v18i1.56182

Keywords:

Precision treatment in oncology, Food and drug administration (FDA), European medicines agency (EMA), Molecular profiling, Targeted therapies

Abstract

Precision oncology has come a long way, largely thanks to our growing understanding of the molecular changes that drive cancer. By identifying these alterations, researchers and clinicians can now tailor treatments more effectively, offering what’s often called the right drug for the right patient at the right dose and at the right time. This approach has opened new possibilities in how we classify diseases, design clinical trials and use biomarkers and health technology to guide decisions. Modern tools like next-generation sequencing (NGS), RNA analysis and immune profiling have made it possible to analyse tumours and even detect genetic material like cell-free DNA from blood samples. These technologies help identify specific mutations or markers that could influence treatment. However, while the potential is enormous, there are still some challenges. For example, interpreting large volumes of genetic data can be tricky and there’s always the risk of false positives or unexpected findings. Plus, whole-genome sequencing and transcriptome profiling can still be expensive and time-consuming. To keep pace, regulatory agencies like the FDA in the U.S. and the EMA in Europe have put frameworks in place to ensure that precision therapies are developed responsibly. The FDA, for instance, encourages simultaneous development of diagnostics and treatments. Meanwhile, the UK’s MHRA has launched initiatives like the Precision Medicine Catapult to speed up innovation and translation from lab to clinic. Looking ahead, scientists are exploring even more refined strategies, such as functional precision oncology. Instead of relying solely on genetic sequencing, this approach incorporates real-time data about how tumours behave and respond to drugs, offering a more dynamic and personalised way to choose the most effective treatment.

References

1. Gameiro GR, Sinkunas V, Liguori GR, Auler-Júnior JOC. Precision Medicine: Changing the way we think about healthcare. Clinics. 2018;73:e723.

2. Pettitt D, Smith J, Meadows N, Arshad Z, Schuh A, DiGiusto D, Bountra C, Holländer G, Barker R, Brindley D. Regulatory barriers to the advancement of precision medicine. Expert Rev Precis Med Drug Dev. 2016 May 3;1(3):319–29.

3. Chude-Okonkwo UK, Paul BS, Vasilakos AV. Enabling precision medicine via contemporary and future communication technologies: A survey. IEEE Access. 2022;11:21210–40.

4. Tang X, Berger MF, Solit DB. Precision oncology: current and future platforms for treatment selection. Trends Cancer. 2024;10(9):781–91.

5. M G, S G, Rajagopal S, Angamuthu G, Dhandapani NV. REVOLUTIONIZING DRUG DEVELOPMENT: HOW AI AND MACHINE LEARNING ARE SHAPING THE FUTURE OF MEDICINE-A REVIEW. Int J Appl Pharm. 2025 May 7;148–56.

6. Stewart BW, Bray F, Forman D, Ohgaki H, Straif K, Ullrich A, Wild CP. Cancer prevention as part of precision medicine:‘plenty to be done.’ Carcinogenesis. 2016;37(1):2–9.

7. Gonzalez-Angulo AM, Hennessy BTJ, Mills GB. Future of Personalized Medicine in Oncology: A Systems Biology Approach. J Clin Oncol. 2010 Jun 1;28(16):2777–83.

8. Mishra N, Dasari A. Artificial intelligence and 3D printing in pharmaceuticals: A new frontier in personalized drug manufacturing. Int J Pharm Pharm Sci. 2025 Jan 1;7(2):15–22.

9. Sharma S, Chaubey A, Pathan MN, Tyagi S. AI-powered virtual screening for drug discovery: Methods and challenges. Int J Pharm Pharm Sci. 2024;6(2):157–64.

10. Tran B, Dancey JE, Kamel-Reid S, McPherson JD, Bedard PL, Brown AMK, Zhang T, Shaw P, Onetto N, Stein L, Hudson TJ, Neel BG, Siu LL. Cancer Genomics: Technology, Discovery, and Translation. J Clin Oncol. 2012 Feb 20;30(6):647–60.

11. Wakai T, Prasoon P, Hirose Y, Shimada Y, Ichikawa H, Nagahashi M. Next-generation sequencing-based clinical sequencing: toward precision medicine in solid tumors. Int J Clin Oncol. 2019 Feb;24(2):115–22.

12. Fernández-Lázaro D, García Hernández JL, García AC, Córdova Martínez A, Mielgo-Ayuso J, Cruz-Hernández JJ. Liquid Biopsy as Novel Tool in Precision Medicine: Origins, Properties, Identification and Clinical Perspective of Cancer’s Biomarkers. Diagnostics. 2020 Apr;10(4):215.

13. Desai A, Reddy NK, Subbiah V. Top advances of the year: Precision oncology. Cancer. 2023;129(11):1634–42.

14. Chen M, Zhao H. Next-generation sequencing in liquid biopsy: cancer screening and early detection. Hum Genomics. 2019 Aug 1;13(1):34.

15. Frampton GM, Fichtenholtz A, Otto GA, Wang K, Downing SR, He J, Schnall-Levin M, White J, Sanford EM, An P, Sun J, Juhn F, Brennan K, Iwanik K, Maillet A, Buell J, White E, Zhao M, Balasubramanian S, Terzic S, Richards T, Banning V, Garcia L, Mahoney K, Zwirko Z, Donahue A, Beltran H, Mosquera JM, Rubin MA, Dogan S, Hedvat CV, Berger MF, Pusztai L, Lechner M, Boshoff C, Jarosz M, Vietz C, Parker A, Miller VA, Ross JS, Curran J, Cronin MT, Stephens PJ, Lipson D, Yelensky R. Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat Biotechnol. 2013 Nov;31(11):1023–31.

16. Olivier M, Asmis R, Hawkins GA, Howard TD, Cox LA. The need for multi-omics biomarker signatures in precision medicine. Int J Mol Sci. 2019;20(19):4781.

17. Vidwans SJ, Turski ML, Janku F, Garrido-Laguna I, Munoz J, Schwab R, Subbiah V, Rodon J, Kurzrock R. A framework for genomic biomarker actionability and its use in clinical decision making. Oncoscience. 2014 Oct 22;1(10):614–23.

18. Mankoff DA, Edmonds CE, Farwell MD, Pryma DA. Development of Companion Diagnostics. Semin Nucl Med. 2016 Jan 1;46(1):47–56.

19. Huang CC, Du M, Wang L. Bioinformatics Analysis for Circulating Cell-Free DNA in Cancer. Cancers. 2019 Jun 11;11(6):805.

20. Rusnáková D, Aziri R, Dubovan P, Jurík M, Mego M, Pinďák D. Detection, significance and potential utility of circulating tumor cells in clinical practice in breast cancer (Review). Oncol Lett. 2024 Oct 17;29(1):10.

21. Hasegawa N, Kohsaka S, Kurokawa K, Shinno Y, Takeda Nakamura I, Ueno T, Kojima S, Kawazu M, Suehara Y, Ishijima M, Goto Y, Kojima Y, Yonemori K, Hayashi T, Saito T, Shukuya T, Takahashi F, Takahashi K, Mano H. Highly sensitive fusion detection using plasma cell‐free RNA in non‐small‐cell lung cancers. Cancer Sci. 2021 Oct;112(10):4393–403.

22. Coughlan C, Bruce KD, Burgy O, Boyd TD, Michel CR, Garcia‐Perez JE, Adame V, Anton P, Bettcher BM, Chial HJ, Königshoff M, Hsieh EWY, Graner M, Potter H. Exosome Isolation by Ultracentrifugation and Precipitation and Techniques for Downstream Analyses. Curr Protoc Cell Biol. 2020 Sep;88(1):e110.

23. Lopes AG, Noel R, Sinclair A. Cost analysis of vein-to-vein CAR T-cell therapy: automated manufacturing and supply chain. Cell Gene Ther Insights. 2020 Jun 2;6(3):487–510.

24. Stegmeier F, Warmuth M, Sellers WR, Dorsch M. Targeted Cancer Therapies in the Twenty-First Century: Lessons From Imatinib. Clin Pharmacol Ther. 2010;87(5):543–52.

25. June CH, O’Connor RS, Kawalekar OU, Ghassemi S, Milone MC. CAR T cell immunotherapy for human cancer. Science. 2018 Mar 23;359(6382):1361–5.

26. Barbier L, Declerck P, Simoens S, Neven P, Vulto AG, Huys I. The arrival of biosimilar monoclonal antibodies in oncology: clinical studies for trastuzumab biosimilars. Br J Cancer. 2019 Jul;121(3):199–210.

27. Kwok G, Yau TCC, Chiu JW, Tse E, Kwong YL. Pembrolizumab (Keytruda). Hum Vaccines Immunother. 2016 Nov 1;12(11):2777–89.

28. Tang Q, Chen Y, Li X, Long S, Shi Y, Yu Y, Wu W, Han L, Wang S. The role of PD-1/PD-L1 and application of immune-checkpoint inhibitors in human cancers. Front Immunol. 2022 Sep 13;13:964442.

29. Buchbinder EI, Desai A. CTLA-4 and PD-1 Pathways: Similarities, Differences, and Implications of Their Inhibition. Am J Clin Oncol. 2016 Feb;39(1):98–106.

30. Cillo AR, Cardello C, Shan F, Karapetyan L, Kunning S, Sander C, Rush E, Karunamurthy A, Massa RC, Rohatgi A, Workman CJ, Kirkwood JM, Bruno TC, Vignali DAA. Blockade of LAG-3 and PD-1 leads to co-expression of cytotoxic and exhaustion gene modules in CD8+ T cells to promote antitumor immunity. Cell. 2024 Aug;187(16):4373-4388.e15.

31. Ghasemi K. Tiragolumab and TIGIT: pioneering the next era of cancer immunotherapy. Front Pharmacol. 2025 Jun 11;16:1568664.

32. Fang H, DeClerck YA. Targeting the Tumor Microenvironment: From Understanding Pathways to Effective Clinical Trials. Cancer Res. 2013 Aug 15;73(16):4965–77.

33. Mesko B. The role of artificial intelligence in precision medicine. Expert Rev Precis Med Drug Dev. 2017 Sep 3;2(5):239–41.

34. Álvarez-Machancoses Ó, DeAndrés Galiana EJ, Cernea A, Fernández de la Viña J, Fernández-Martínez JL. On the Role of Artificial Intelligence in Genomics to Enhance Precision Medicine. Pharmacogenomics Pers Med. 2020 Mar 19;13:105–19.

35. Johnson KB, Wei W, Weeraratne D, Frisse ME, Misulis K, Rhee K, Zhao J, Snowdon JL. Precision Medicine, AI, and the Future of Personalized Health Care. Clin Transl Sci. 2021 Jan;14(1):86–93.

36. Bhinder B, Gilvary C, Madhukar NS, Elemento O. Artificial intelligence in cancer research and precision medicine. Cancer Discov. 2021;11(4):900–15.

37. Beaver JA, Howie LJ, Pelosof L, Kim T, Liu J, Goldberg KB, Sridhara R, Blumenthal GM, Farrell AT, Keegan P, Pazdur R, Kluetz PG. A 25-Year Experience of US Food and Drug Administration Accelerated Approval of Malignant Hematology and Oncology Drugs and Biologics: A Review. JAMA Oncol. 2018 Jun 1;4(6):849.

38. Lubbers BR, Schilhabel A, Cobbaert CM, Gonzalez D, Dombrink I, Brüggemann M, Bitter WM, Van Dongen JJM. The New EU Regulation on In Vitro Diagnostic Medical Devices: Implications and Preparatory Actions for Diagnostic Laboratories. HemaSphere. 2021 May;5(5):e568.

39. Kalemkerian GP, Narula N, Kennedy EB, Biermann WA, Donington J, Leighl NB, Lew M, Pantelas J, Ramalingam SS, Reck M, Saqi A, Simoff M, Singh N, Sundaram B. Molecular Testing Guideline for the Selection of Patients With Lung Cancer for Treatment With Targeted Tyrosine Kinase Inhibitors: American Society of Clinical Oncology Endorsement of the College of American Pathologists/International Association for the Study of Lung Cancer/Association for Molecular Pathology Clinical Practice Guideline Update. J Clin Oncol. 2018 Mar 20;36(9):911–9.

40. Spitzenberger F, Patel J, Gebuhr I, Kruttwig K, Safi A, Meisel C. Laboratory-Developed Tests: Design of a Regulatory Strategy in Compliance with the International State-of-the-Art and the Regulation (EU) 2017/746 (EU IVDR [In Vitro Diagnostic Medical Device Regulation]). Ther Innov Regul Sci. 2022 Jan;56(1):47–64.

41. Tsimberidou AM, Müller P, Ji Y. Innovative trial design in precision oncology. Semin Cancer Biol. 2022 Sep 1;84:284–92.

42. Baumfeld Andre E, Reynolds R, Caubel P, Azoulay L, Dreyer NA. Trial designs using real‐world data: The changing landscape of the regulatory approval process. Pharmacoepidemiol Drug Saf. 2020 Oct;29(10):1201–12.

43. Herbst RS, Blumenthal G, Khleif SN, Lippman SM, Meropol NJ, Rosati K, Shulman LN, Smith H, Wang M, Winn RA. Optimizing public-private partnerships to support clinical cancer research. JNCI J Natl Cancer Inst. 2025;117(7):1305–10.

44. Soo RA, Reungwetwattana T, Perroud HA, Batra U, Kilickap S, Tejado Gallegos LF, Donner N, Alsayed M, Huggenberger R, Van Tu D. Prevalence of EGFR Mutations in Patients With Resected Stages I to III NSCLC: Results From the EARLY-EGFR Study. J Thorac Oncol. 2024 Oct;19(10):1449–59.

45. Daud A, Tsai K. Management of Treatment-Related Adverse Events with Agents Targeting the MAPK Pathway in Patients with Metastatic Melanoma. The Oncologist. 2017 Jul 1;22(7):823–33.

46. Arbour KC, Riely GJ. Systemic Therapy for Locally Advanced and Metastatic Non–Small Cell Lung Cancer: A Review. JAMA. 2019 Aug 27;322(8):764.

47. Yang L, Xue J, Yang Z, Wang M, Yang P, Dong Y, He X, Bao G, Peng S. Side effects of CDK4/6 inhibitors in the treatment of HR+/HER2− advanced breast cancer: a systematic review and meta-analysis of randomized controlled trials. Ann Palliat Med. 2021 May;10(5):5590–9.

48. Pal Singh S, Dammeijer F, Hendriks RW. Role of Bruton’s tyrosine kinase in B cells and malignancies. Mol Cancer. 2018 Dec;17(1):57.

Published

28-11-2025

How to Cite

MURTHANNAGARI, V. R., MOORTHY, K., AHMED, S. S., & MADAR, I. H. (2025). REGULATORY AND FUNCTIONAL FRONTIERS IN PRECISION ONCOLOGY. International Journal of Applied Pharmaceutics, 18(1). https://doi.org/10.22159/ijap.2026v18i1.56182

Issue

Section

Review Article(s)

Similar Articles

<< < 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.