INVESTIGATION ON FORMULATION VARIABLES FOR PREPARATION OF FLUCONAZOLE-LOADED SPANETHOSOMES

Authors

  • LUBNA A. SABRI Department of Pharmaceutics, College of Pharmacy, University of Baghdad, Iraq https://orcid.org/0000-0001-7729-6645
  • SAJATAHER SAHIB College of Pharmacy, University of Misan, Iraq

DOI:

https://doi.org/10.22159/ijap.2026v18i1.56187

Keywords:

Ethanol injection, Formulation optimization, Fluconazole, Spanethosomes, Topical delivery

Abstract

Objective: This study aimed to develop fluconazole (FLC)-loaded spanethosomes by investigating the effects of various formulation variables, with the goal of identifying the optimal formulation that exhibits desirable vesicular characteristics for topical delivery.

Methods: Fifteen formulations containing0.5% w/v FLCspanethosomes were prepared using the ethanol injection method. The formulations were assessed for vesicle size, polydispersity index (PDI), entrapment efficiency and in vitro drug release. The optimal formulation was further characterized for its morphological features and FTIR spectra.

Results: All prepared spanethosomes exhibited nanoscale vesicle sizesranging between 79±8.54 and 3517 ± 80.85 nm, with entrapment efficiency between42.35 ± 4.55 and 95.46 ± 0.68%. The optimum formula, composedofSpan 60 and sodium deoxycholate (SDC) in a 200:15 mgweightratio, exhibited a spherical morphology without aggregation.It achieved a cumulative FLC release of94.6% within6 hours.

Conclusion: These results suggest that spanethosomes are promising drug delivery systems that can enhance the therapeutic efficacy of FLC for treating superficial fungal infections while minimizing systemic side effects.

References

1. Mosallam S, Albash R, Abdelbari MA. Advanced Vesicular Systems for Antifungal Drug Delivery.AAPSPharmSciTech. 2022; 23(6). https://doi.org/10.1208/s12249-022-02357-y , PMID:35896903.

2. Tarannum N, Pooja K, Jakhar S, Mavi A. Nanoparticles assisted intra and transdermic delivery of antifungal ointment: an updated review. Discov Nano. 2024;19(1). https://doi.org/10.1186/s11671-023-03932-3 , PMID:38195832.

3. Mali R, Patil J. Nanoparticles: A Novel Antifungal Drug Delivery System. Mater.Proc. 2023; 14: 61. https://doi.org/10.3390/IOCN2023-14513.

4. El-Housiny S, Eldeen MAS, El-Attar YA, Salem HA, Attia D, Bendas ER, et al. Fluconazole-loaded solid lipid nanoparticles topical gel for treatment of pityriasis versicolor: Formulation and clinical study. Drug Deliv. 2018; 25(1):78–90. https://doi.org/10.1080/10717544.2017.1413444 , PMID: 29239242.

5. Salerno C, Carlucci AM, Bregni C. Study of in vitro drug release and percutaneous absorption of fluconazole from topical dosage forms. AAPS PharmSciTech. 2010;11(2):986–93. https://doi.org/10.1208/s12249-010-9457-1 , PMID: 20521179.

6. Touitou E, Natsheh H. The Evolution of Emerging Nanovesicle Technologies for Enhanced Delivery of Molecules into and across the Skin. Pharmaceutics. 2024; 16(2):267. https://doi.org/10.3390/pharmaceutics16020267.

7. El-Zaafarany GM, Nasr M. Insightful exploring of advanced nanocarriers for the topical/transdermal treatment of skin diseases. Pharm Dev Technol. 2021;26(10):1136–57. https://doi.org/10.1080/10837450.2021.2004606 ,PMID 34751091.

8. Sinico C, FaddaAM. Vesicular carriers for dermal drug delivery.ExpertOpin Drug Deliv. 2009;6(8):813–25. https://doi.org/10.1517/17425240903071029 ,PMID: 19569979.

9. Abd Alhammid S N, Kassab H J, Hussein L S, Haiss MA, Alkufi H k. Spanlastics Nanovesicles: An Emerging and Innovative Approach for Drug Delivery. Maaen Journal for Medical Sciences. 2023; 2 (2): Article 9. https://doi.org/10.55810/2789-9128.1027.

10. Abd-Alaziz DM, Mansour M, Nasr M, Sammour OA. Spanethosomes as a novel topical carrier for silymarin in contrast to conventional spanlastics: Formulation development, in vitro and ex vivo evaluation for potential treatment of leishmaniasis. J Drug DelivSci Technol. 2023;88(August):104887. https://doi.org/10.1016/j.jddst.2023.104887

11. Richard C, Cassel S,Blanzat M. Vesicular systems for dermal and transdermal drug delivery. RSC Adv. 2020, 11, 442–451, https://doi.org/10.1039/D0RA09561C.

12. Al Sawaf OF, Al-gawhari FJ. Novel probe sonication method for the preparationof meloxicam bilosomes for transdermal delivery: part one.Journal of Research in Medical and Dental Science.2023; 11(6):5-12.

13. Naji GH, Al Gawhari FJ. Study the Effect of Formulation Variables on Preparation of Nisolidipine Loaded Nano Bilosomes. Iraqi J Pharm Sci. 2023; 32: 271–82, https://doi.org/10.31351/vol32issSuppl.pp271-282

14. Almajidi YQ, Taghi H, Issa AA. Formulation and development of ethosomal drug delivery system of silymarin for transdermal application. Iraqi J Pharm Sci. 2024; 33(4):126-40. https://doi.org/10.31351/vol33iss4pp126-140.

15. Abdelmalak NS, El-Menshawe SF. A new topical fluconazole microsponge loaded hydrogel: Preparation and characterization. Int J Pharm Pharm Sci. 2012; 4 (SUPPL.1):460–9.

16. Rajab NA, Talal Sulaiman H. OlmesartanMedoxomilNanomicelle Using Soluplus for Dissolution Enhancement: Preparation, In-vitro and Ex-vivo Evaluation. Iraqi J Pharm Sci. 2025 Jun; 34(2):47-59. https://doi.org/10.31351/vol34iss2pp47-59.

17. Jassim ZE, Al Kinani KK, Alwan ZS. Preparation and evaluation of pharmaceutical cocrystals for solubility enhancement of dextromethorphan HBr. Int J Drug Deliv Technol. 2021 Oct 1; 11(4):1342-9. https://doi.org/10.25258/ijddt.11.4.37.

18. Liew KB, Loh GO, Tan YT, Peh KK. Development and application of simple HPLC-UV method for fluconazole quantification in human plasma. Inter J PharmPharm Sci. 2012; 4 (4):107-1011.

19. Hussein K. Alkufi, Kassab H A Potential Method for Enhanced Performance of Nimodipine by SpanlasticNanovesicle with Tween 40 as Edge Activator.Iraqi J Pharm Sci. 2025 Jun; 34(2):227-38. https://doi.org/10.31351/vol34iss2pp227-238

20. Bhalaria M. K, Naik S, Misra A. N. Ethosomes: a novel delivery system for antifungal drugs in the treatment of topical fungal diseases. Indian J Exp Biol. 2009; 47(5): 368–375, PMID:19579803.

21. Kumar GP, Rajeshwarrao P. Nonionic surfactant vesicular systems for effective drugdelivery—an overview. Acta Pharm Sin B 2011; 1: 208–219. https://doi.org/10.1016/j.apsb.2011.09.002.

22. Shaji J, Shah A. Optimzation ofTenoxicam LoadedNiosomes Using Quadratic Design. Int J Curr Pharm Sci. 2016 Jan. 7;8(1):62-7.

23. Elsayed MMA, Ibrahim MM, Cevc G. The effect of membrane softeners on rigidity of lipid vesicle bilayers: Derivation from vesicle size changes. Chem Phys Lipids. 2018 Jan;210:98-108. https://doi.org/10.1016/j.chemphyslip.2017.10.008 , PMID:29107604.

24. El Zaafarany GM, Awad GA, Holayel SM, Mortada ND. Role of edge activators and surface charge in developing ultradeformable vesicles with enhanced skin delivery. Int J Pharm. 2010 Sep 15;397(1-2):164-72. https://doi.org/10.1016/j.ijpharm.2010.06.034 ,PMID: 20599487.

25. Shaji J, Lal M. Preparation, optimization and evaluation of transferosomal formulation for enhanced transdermal delivery of a COX-2 inhibitor. Int J Pharm Pharm Sci. 2014;6(1):467-77.

26. Hadi HA, Hussein AH. Effect of Addition a Sodium Deoxycholate as an Edge Activator-for Preparation of OndansetronHClTansfersomalDispersion.AlMustansiriyah Journal of Pharmaceutical Sciences. 2023;23(4):429-42.

27. Salem HF, Nafady MM, Ali AA, Khalil NM, Elsisi AA. Evaluation of Metformin Hydrochloride Tailoring Bilosomes as an Effective Transdermal Nanocarrier. Int J Nanomedicine. 2022 Mar 17;17:1185-1201, https://doi.org/10.2147/IJN.S345505 , PMID:35330695.

28. Sallustio V, Farruggia G, di Cagno MP, Tzanova MM, Marto J, Ribeiro H, et al. Design and Characterization of an Ethosomal Gel Encapsulating Rosehip Extract. Gels. 2023 Apr 25; 9(5):362. https://doi.org/10.3390/gels9050362. PMID: 37232954.

29. Limsuwan T, Boonme P, Khongkow P, Amnuaikit T. Ethosomes of Phenylethyl Resorcinol as Vesicular Delivery System for Skin Lightening Applications. Biomed Res Int. 2017;2017:8310979. https://doi.org/10.1155/2017/8310979, PMID:28804723.

30. Patra M, Salonen E, Terama E, Vattulainen I, Faller R, Lee BW, Holopainen J, Karttunen M. Under the influence of alcohol: the effect of ethanol and methanol on lipid bilayers. Biophys J. 2006 Feb 15;90(4):1121-35. https://doi.org/10.1529/biophysj.105.062364 , PMID:16326895.

31. Said M, Ali KM, Alfadhel MM, Afzal O, Aldosari BN, Alsunbul M, Bafail R, Zaki RM. Ocular mucoadhesive and biodegradable spanlastics loaded cationic spongy insert for enhancing and sustaining the anti-inflammatory effect of prednisolone Na phosphate; Preparation, I-optimal optimization, and In-vivo evaluation. Int J Pharm X. 2024 Oct 16;8:100293. https://doi.org/10.1016/j.ijpx.2024.100293.

32. Almuqbil RM, Sreeharsha N, Nair AB. Formulation-by-Design of EfinaconazoleSpanlasticNanovesicles for Transungual Delivery Using Statistical Risk Management and Multivariate Analytical Techniques. Pharmaceutics. 2022 Jul 6; 14(7):1419. https://doi.org/10.3390/pharmaceutics14071419, PMID:35890316.

33. Abdelbari MA, El-Mancy SS, Elshafeey AH, Abdelbary AA. Implementing spanlastics for improving the ocular delivery of clotrimazole: In vitro characterization, ex vivo permeability, microbiological assessment and in vivo safety study. Int J Nanomedicine. 2021;16:6249–61. https://doi.org/10.2147/IJN.S319348

34. Leonyza A, Surini S. Optimaztion of Sodium Deoxycholate-Based Transferosomes for Percutaneous Delivery of Peptides and Proteins. International Journal of Applied Pharmaceutics. 2019; 11(5): 329–332 . https://doi.org/10.22159/ijap.2019v11i5.33615.

35. Hassan AS, Hofni A, Abourehab MAS, Abdel-Rahman IAM. Ginger Extract–Loaded Transethosomes for Effective Transdermal Permeation and Anti-Inflammation in Rat Model. Int J Nanomedicine. 2023;18:1259-1280. https://doi.org/10.2147/IJN.S400604 , PMID:36945254.

36. Danaei M, Dehghankhold M, Ataei S, HasanzadehDavarani F, Javanmard R, Dokhani A, Khorasani S, Mozafari MR. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics. 2018 May 18;10(2):57. https://doi.org/10.3390/pharmaceutics10020057.

37. Guillot AJ, Martínez-Navarrete M, Garrigues TM, Melero A. Skin drug delivery using lipid vesicles: A starting guideline for their development. J Control Release. 2023 Mar;355:624-654. https://doi.org/10.1016/j.jconrel.2023.02.006.

38. Guo F, Wang J, Ma M, Tan F, Li N. Skin targeted lipid vesicles as novel nano-carrier of ketoconazole: characterization, in vitro and in vivo evaluation. J Mater Sci Mater Med. 2015 Apr;26(4):175. https://doi.org/10.1007/s10856-015-5487-2.

39. Deaguero IG, Huda MN, Rodriguez V, Zicari J, Al-Hilal TA, Badruddoza AZM, Nurunnabi M. Nano-Vesicle Based Anti-Fungal Formulation Shows Higher Stability, Skin Diffusion, Biosafety and Anti-Fungal Efficacy In Vitro. Pharmaceutics. 2020 Jun 5;12(6):516. https://doi.org/10.3390/pharmaceutics12060516.

40. Kadhum RW, Abd-Alhammid SN. Preparation and Characterization of Dutasteride Nanoparticles as Oral Fast-Dissolving Film. JFac Med Baghdad. 2024 Jul;66(2):237-46. https://doi.org/10.32007/jfacmedbagdad.6622240.

41. Elgewelly MA, Elmasry SM, Sayed NSE, Abbas H. Resveratrol-Loaded Vesicular Elastic Nanocarriers Gel in Imiquimod-Induced Psoriasis Treatment: In Vitro and In Vivo Evaluation. J Pharm Sci. 2022 Feb; 111(2): 417-431. https://doi.org/10.1016/j.xphs.2021.08.023 , PMID:34461114.

42. Ali SK, Entidhar J. Al-Akkam. Bilosomes as Soft Nanovesicular Carriers for Ropinirole Hydrochloride: Preparation and In- vitro Characterization. Iraqi J Pharm Sci. 2023 Nov;32(Suppl.):177-8. https://doi.org/10.31351/vol32issSuppl.pp177-187.

43. Rathi R, Singh I, Sangnim T, Huanbutta K. Development and Evaluation of Fluconazole Co-Crystal for Improved Solubility and Mechanical Properties. Pharmaceutics. 2025; 17(3):371. https://doi.org/10.3390/pharmaceutics17030371.

44. Fatima I, Rasul A, Shah S, Saadullah M, Islam N, Khames A, Salawi A, Ahmed MM, Almoshari Y, Abbas G, et al. Novasomes as Nano-Vesicular Carriers to Enhance Topical Delivery of Fluconazole: A New Approach to Treat Fungal Infections. Molecules. 2022; 27(9):2936. doi:10.3390/molecules27092936 , PMID:35566287.

45. Rajeshwar V, Kondoju D L, Bushra F, Vasudha B. Development and Evaluation of Liposomal Selexipag: A Novel Oral Delivery System for Pulmonary Arterial Hypertension. Asian J Pharm Clin Res. 2025 Jul. 7; 18(7):167-73.

46. Adhikari S, Sudheer P, Mohana B, Manjunatha P S. Design, development, and evaluation of doxorubicin hydrochloride-loaded transfersomes for transdermal drug delivery. The Thai Journal of Pharmaceutical Sciences. 2024; 48 (2): Article 3. https://doi.org/10.56808/3027-7922.2907.

47. Modha NB, Chotai NP, Patel VA, Patel BG. Preparation, characterization and evaluation of fluconazole polymorphs. Int J Res Pharm Biomed Sci. 2010; 1(2):124-7.

48. Yassin GE, Amer MA, Mannaa IM, Khalifa MK. Fluconazole-niosome-laden contact lens: a promising therapeutic approach for prolonged ocular delivery and enhanced antifungal activity. J Pharm Innov. 2024 Aug; 19(4):45. https://doi.org/10.1007/s12247-024-09850-w.

49. Zaki RM, Alfadhel MM, Alossaimi MA, Elsawaf LA, Devanathadesikan Seshadri V, Almurshedi AS, Yusif RM, Said M. Central Composite Optimization of Glycerosomes for the Enhanced Oral Bioavailability and Brain Delivery of Quetiapine Fumarate. Pharmaceuticals. 2022; 15(8):940. https://doi.org/10.3390/ph15080940

50. Bou-Merhi M, Rebeiz N, Hariri E, Nasr P. A RP-HPLC-UV method for the dual detection of fluconazole and clobetasol propionate and application to a model dual drug delivery hydrogel. Anal Methods. 2024; 16(15):1754–1762. https://doi.org/10.1039/D4AY02219J.

51. Cheng Z, Kandekar U, Ma X, Bhabad V, Pandit A, Liu L, Luo J, Munot N, Chorage T, Patil A, Patil S, Tao L. Optimizing fluconazole-embedded transfersomal gel for enhanced antifungal activity and compatibility studies. Front Pharmacol. 2024 Mar 28; 15:1353791. https://doi.org/10.3389/fphar.2024.1353791.

Published

27-10-2025

How to Cite

SABRI, L. A., & SAHIB, S. (2025). INVESTIGATION ON FORMULATION VARIABLES FOR PREPARATION OF FLUCONAZOLE-LOADED SPANETHOSOMES. International Journal of Applied Pharmaceutics, 18(1). https://doi.org/10.22159/ijap.2026v18i1.56187

Issue

Section

Original Article(s)

Similar Articles

<< < 1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.