PROFILING AND GROUPING OF FLAVONOID COUMPOUND USING LCMS FROM A COMBINATION OF WHITE TURMERIC EXTRACT AND HONEY AND ITS BIOACTIVITY TEST IN OBESE RATS
DOI:
https://doi.org/10.22159/ijap.2026v18i1.56374Keywords:
White turmeric (Curcuma zedoaria), Honey, Glucose, Obesity, Triglycerides, Free fatty acidsAbstract
Objective: The aim of this study was to identify and classify flavonoid compounds from a combination of white turmeric (Curcuma zedoaria) extract and honey which have the potential as anti-obesity and anti-diabetic type 2 agents in obese Wistar rats.
Methods: This study used 25 rats divided into 5 groups, namely the normal, the obese, the obese group plus 100 mg/kg bw white turmeric extract, the obese group plus 100 mg/kg bw honey, and the obese group plus the combination of white turmeric and honey. The treatment was carried out for 4 w and the parameters measured were body weight, free fatty acid, glucose, and serum triglycerides levels of rats. Identification of flavonoid compounds using Liquid Chromatography-Mass Spectrometry (LC-MS).
Results: The results showed that the combination of white turmeric extract and honey was able to reduce the weight of rats (Lee's obesity index), free fatty acid (FFA), glucose and triglycerides (TG) levels with significant differences (p<0.05) from the obese rats. The average decrease in glucose, triglyceride, free fatty acid, and Lee's obesity index levels was 66.12%, 74.31%, 42.57%, and 20.59%, respectively. The results of LC-MS analysis identified 33 flavonoid compounds from white turmeric and 15 flavonoids from honey which are thought to play an active role in reducing weight, free fatty acids, glucose and triglycerides.
Conclusion: The results of this study stated that there were 48 flavonoid compounds identified from the combination of white turmeric extract (Curcuma zedoaria) and honey which have the potential as anti-obesity and anti-diabetic type 2 in obese Wistar rats.
References
1. World Health Organization (WHO), 2025. Obesity and Overweight. Available from: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (25 May 2025).
2. Hossain MK, Dayem AA, Han J, Yin Y, Kim K, Saha SK, et al. Molecular Mechanisms of the Anti-Obesity and Anti-Diabetic Properties of Flavonoids (Review). International Journal of Molecular Sciences (MDPI) 2016; 17(569): 2-32. https://doi.org/10.3390/ijms17040569.
3. Bogoriani NW, Suaniti NM, Bawa Putra AA, Lestari KDP. The Activity of Cordyline Terminalis’s Leaf Extract as Antidiabetic in Obese Wistar Rats; Int.J. Pharm. Res. Allied Sci 2019; 8(2):206-13.
4. Varadhan S. and Simon SA. Ratio of Triglycerides to High-Density Lipoprotein Cholesterol and Markers of Lver Injury in Diabetes Mellitus. Asian J Pharm Clin Res 2019; 8(6), 199-201.
5. Murray RK, Granner DK, & Rodwell VW. Biokimia Harper. Edisi 29. Jakarta :Buku Kedokteran EGC; 2014.
6. Bogoriani NW, Laksmiwati, AAIM., Putra AAB, Heltyani WE, Lestari KDP, Mahayani PAE. Saponins Role Of Bali Andong Leaf As Antiobesity In Rats. International Journal of Pharmaceutical Research 2019; 11 (Issue 2): 382-89. doi:10.31838/ijpr/2019.11.02.052.
7. Mutiara EV, and Wildan A. Ekstraksi Flavonoid Dari Daun Pare (Momordica charantia L.) Berbantu Gelombang Mikro Sebagai Penurun Kadar Glukosa secara In Vitro. Jurnal Medicine and Pharmacology 2015; 9(1): 1-11. doi:10.14710/metana.v10i01.9771
8. Sarian MN, Ahmed QU, Siti Zaiton Mat So’ad SZM, Alhassan AM, Murugesu S, Perumal V, et al. Antioxidant and Antidiabetic Effects of Flavonoids:A Structure-Activity Relationship Based Study. BioMed Research International 2017; Volume 2017: 1-14 pages. doi:10.1155/2017/8386065
9. Marella S. Flavonoids-The Most Potent Poly-phenols as Antidiabetic Agents: An Overview. Mod Appro Drug 2017; 1(3), 1-5. doi:10.31031/MADD.2017.01.000513
10. Tariq S, Imran M, Mushtaq Z, & Asghar N. Phytopreventive antihypercholesterolmic and antilipidemic perspectives of zedoary (Curcuma zedoaria Roscoe.) herbal tea. Lipids in Health and Disease 2016; 15(1): 1–10. doi:10.1186/s12944-016-0210-y
11. Saridewi I, Bogoriani NW, dan Suarya P. Activity of Methanol Extract of White Turmeric Rhizome (Curcuma zedoaria Rosc.) as a Hypolipidemic Agent in Obese White Wistar Rats on a High Cholesterol Diet. Jurnal Kimia 2018; 12 (2): 140-6. doi:10.24843/JCHEM.2018.v12.i02.p07
12. Wardhani FM, Chiuman L, Ginting CN, Ginting SF, & Nasution AN. Efek Ekstrak Kunyit Putih (Curcuma zedoaria) Sebagai Nefroprotektor Pada Tikus Putih Jantan Galur Wistar yang Diinduksi Tembaga. Journal Of The Indonesian Medical Association.2019; 69(8): 258- 66.
13. Erny T, Veronica L, Stephanie T, Nasution CR, Ongko NX. Uji Toksisitas Akut Ekstrak Kunyit Putih (Curcuma zedoaria) terhadap Gambaran Hstopatologi Pankreas. Jurnal Kedokteran dan Kesehatan 2022; 9 (3): 351-57. doi:10.32539/JKK.V9I3.19107
14. Lee TK, Lee D, Lee SR, Ko YJ, Sung Kang K, Chung SJ, et al. Sesquiterpenes from Curcuma zedoaria rhizomes and their cytotoxicity against human gastric cancer AGS cells. Bioorganic Chemistry 2019; 87, 117–22. doi:10.1016/j.bioorg.2019.03.015
15. Lee TK, Trinh TA, Lee SR, Kim S, So HM, Moon E, et al. Bioactivity-based analysis and chemical characterization of antiinflammatory compounds from Curcuma zedoaria rhizomes using LPS-stimulated RAW264.7 cells. In Bioorganic Chemistry 2019; (Vol. 82); 1-34. doi:10.1016/j.bioorg.2018.09.027.
16. Daniela P, Florina D, and Mircea O. Antioxidant Activity, Total Phenolic Content, Individual Phenolics and Physicochemical Parameters Suitability for Romanian Honey Authentication. Foods 2020; 9, 306; p. 2-22. doi:10.3390/foods9030306.
17. Danila C, Tamara Y. Forbes-Hernández, Sadia A, Massimiliano G, Reboredo-Rodriguez P, et al. Phenolic Compounds in Honey and Their Associated Health Benefits: A Review. Molecules 2018; 23, 2322; p. 2-20. doi:10.3390/molecules23092322.
18. Victoria C, Nolan, Harrison J, and Jonathan AGC. Dissecting the Antimicrobial Composition of Honey. Antibiotics 2018; 8, 251; 2-16. doi:10.3390/antibiotics8040251.
19. Bogoriani NW, Suaniti NM, Bawa-Putra AA, Pradnya-Lestari KD, Heltyani WE. The effect of Cordyline terminalis's leaf extract on lipid profile, obesity and liver function in obese induced rats," Sys Rev Pharm 2020; 11(Issue 11): 1080-86. doi:10.31838/srp.2020.11.154.
20. Sukadana IM, Bogoriani NW, Ariani M. Compounds in the stem of Etlingera elatior can reduce the levels of free Fatty Acid and Blood Glucose in Obesity Wistar Rats. Research J. Pharm. And Tech 2023; 16(10): 4530-36. doi:10.52711/0974-360X.2023.00738.
21. Shimadzu LC solution LC getting started Guide, Shimadzu Corporation Japan, 2014
22. Vinayagam R, and Xu B, Antidiabetic Properties of Dietary Flavonoid: a cellular mechanism review. Nutrition and Matabolism 2015; 12(60): 1-20.doi:10.1186/s12986-015-0057-7.
23. Dzomba, P. and Musekiwa. Anti-obesity and antioxidant activity of dietary flavonoids from Diocorea steriscus tubers. Journal of Coastal Life Medicine 2014; 2(6): 465-70. doi:10.12980/JCLM.2.201414B8.
24. Hussein SA, Yakout A, El-Senosi, Ghada H, EL-Sharkawy. Antiobesity activity and hypolipidemic effect of Proanthocyanidins in rats fed a high fat diet. Benha Veterinary Medical Jounnal 2018; 35( 2): 464-79. doi:10.21608/bvmj.2018.96442.
25. Gogoi A, Gogoi N, Neog B. Dubious Anti-Obesity Agent HCA from Garcinia: A Systematic Review. Int J Pharm Sci 2015; 7 (7): 1-8.
26. You JS, Lee Y., Kim KS, Kim SH, Chang KJ. Anti-obesity and hypolipidaemic effects of Nelumbo nucifera seed ethanol extract in human pre-adipocytes and rats fed a high‐fat diet. J Sci Food Agric 2014; 94: 568-75. doi:10.1002/jsfa.6297.
27. Ardalani H, Hejazi Amiri F, Hadipanah A, & Kongstad KT. Potential antidiabetic phytochemicals in plant roots: a review of in vivo studies. Journal of Diabetes and Metabolic Disorders 2021; . 20: 1-18.doi:10.1007/s40200-021-00853-9.
28. Abdullah, Angelina, Yumna M, Arbianti R, Utami TS, Hermansyah H, et al. Flavonoid isolation and identification of mother-in-law’s tongue leaves (sansevieria trifasciata) and the inhibitory activities to xanthine oxidase enzyme. In E3S Web of Conferences 2018; (Vol. 67): 1-6.doi:10.1051/e3sconf/20186703011
29. Suastuti, N G MDA., Bogoriani, NW., Bawa_Putra, AA. Activity of Hylocereus costarioensis’s Extract as Antiobesity and hypolipidemic of Obese Rats. International Journal of Pharmaceutical Research & Allied Sciences 2018;7(1) : 201-8.
30. Yi H, Peng H, Wu X, Xu X, Kuang T, Zhang J, et al, The Therapeutic Effects and Mechanisms of Quercetin on Metabolic Diseases: Pharmacological Data and Clinical Evidence: Review Article. Oxidative Medicine and Cellular Longevity. 2021; Volume 2021, Article ID 6678662: 16 pages. https://doi.org/10.1155/2021/6678662
31. Aghababaei F, and Hadidi M. Review : Recent Advances in Potential Health Benefits of Quercetin. Pharmaceuticals. 2023; 16:1020. https://doi.org/ 10.3390/ph16071020
32. Yumna M, Angelina, Abdullah, Arbianti R, Utami TS, & Hermansyah H. Effect of mother-in-law’s tongue leaves (Sansevieria trifasciata) extract’s solvent polarity on anti-diabetic activity through in vitro α-glucosidase enzyme inhibition test. In E3S Web of Conferences 2018; (Vol. 67):1-5. doi:10.1051/e3sconf/20186703003
33. Moore WT, Luo J, Liu D. Kaempferol improves glucose uptake in skeletal muscle via an AMPK-dependent mechanism. Food Science and Human Wellness 2023; 12 (6): 2087-2094https://doi.org/10.1016/j.fshw.2023.03.028
34. Chen S, Jiang H, Wu X, Fang J. Therapeutic Effect of Quercetin on Inflammation, Obesity, and Type 2 Diabetes. Mediators of Inflammations 2016; vol 2016 (Issue 1): 1- 5 https://doi.org/10.1155/2016/9340637.
35. Dhanya R. Quercetin for Managing Type 2 Diabetes and Its Complications an Insight into Multitarget Therapy. Biomedicine and Pharmacotherapy 2022; 146 (2022) 112560 (2021). doi:/10.106/j.biopha.2021.112560.
36. Parveen S, Bhat IUH, Bhat R. Kaempferol and its derivatives: Biological activities and therapeutic potential. Asian Pacific Journal of Tropical Biomedicine 2023; 13(10): 411-20. doi:10.4103/2221-1691.387747.
37. Siddiquee R, Mahmood T, Ansari VA, Ahsan F, Bano S, Ahmad S. Apigenin unveiled: an encyclopedic review of its preclinical and clinical insights. Discover Plants 2025;2:11; 1-24. doi:10.1007/s44372-024-00039-6
38. Tobar-Delgado E, Mejía-España D, Osorio-Mora O, and Serna-Cock L. Rutin: Family Farming Products’ Extraction Sources, Industrial Applications and Current Trends in Biological Activity Protection. Molecules 2023; 28, 586:1-26. doi:10.3390/molecules2815586.
39. Rajappa R, Sireesh D, Salai MB, Ramkumar KM, Sarvajayakesavulu S, and Madhunapantula SV. Treatment with Narigenin Evatetes the activity of Transcription Nrf2 to Protect Pancreatic β-cells from Streptozoticin Induced Diabetes in Vitro and in vivo. Front. Pharmacol 2019; 9:1562: 1-20. doi:10.3389/fphar.2018.0156
40. Huang L, Kim Mi-Yeon, and Cho JY. Immunopharmacological Activities of Luteolin in Chronic Disease. International Journal of Molecular Sciences 2023; 24(3); 24, 2136:1-24. doi:10.3390/ijms2403213.
41. Sheng Y, Sun Y, Tang Y, Yu Y, Wang J, Zheng F., Li Y. and Sun Y. Catechins: Protective mechanism of antioxidant stress in atherosclerosis. Front. Pharmacol 2023; 14:1144878:1-15. doi:10.3389/fphar.2023.1144878.
42. Bogoriani NW, Pratiwi IGAPE, Bawa IGAG, Komang Tria Noviana Dewi KTN, Fudholi A. Effect of Intake of Lidah Mertua (Sansevieria trifasciata Laurentii) Leaf Extract on Free Fatty Acid, Glucose and Triglyceride Levels in Obese Wistar Rats and Compound Identification by LC-MS/MS. International Journal of Design & Nature and Ecodynamics 2025; 20 (7): 1533-1540. https://doi.org/10.18280/ijdne.200710.
43. Bogoriani NW, Pratiwi IGAPE, Mirawati NW, Asih IARA, Dewi KTN. Therapeutic Potential of Red Ginger (Zingiber officinale var. Rubrum) Bioactive Compounds in Obesity-Associated Metabolic Parameters of Wistar Rats. Biomedical & Pharmacology Journal 2025; 18(3): 2239-2248. https://dx.doi.org/10.13005/bpj/3250
Published
How to Cite
Issue
Section
Copyright (c) 2025 ni wayan Bogoriani, Ayu, NI MADE SUANITI, KOMANG TRIA NOVIANA DEWI

This work is licensed under a Creative Commons Attribution 4.0 International License.