POLYMER STABILIZED AMORPHOUS DISPERSIONS OF CLONAZEPAM: CHARACTERIZATION AND IN VITRO DISSOLUTION ANALYSIS

Authors

  • KHURSHID JAHAN Department of Pharmacy, World University of Bangladesh, Uttara, Dhaka-1230, Bangladesh https://orcid.org/0000-0001-9131-554X
  • TONMOY BHOWMICK Department of Pharmacy, World University of Bangladesh, Uttara, Dhaka-1230, Bangladesh https://orcid.org/0009-0005-9832-3821
  • JANNATUL FERDOUSI Department of Pharmacy, World University of Bangladesh, Uttara, Dhaka-1230, Bangladesh https://orcid.org/0009-0008-3933-7846
  • SHIHAB HOSSAIN Department of Pharmacy, World University of Bangladesh, Uttara, Dhaka-1230, Bangladesh
  • NAHID HASAN SHUVO Department of Pharmacy, World University of Bangladesh, Uttara, Dhaka-1230, Bangladesh

DOI:

https://doi.org/10.22159/ijap.2026v18i1.56438

Keywords:

Clonazepam, Binary solid dispersion, Melting method, Release kinetic, FTIR, SEM, DSC

Abstract

Objective: The objective of this study is to enhance the aqueous solubility and dissolution rate of poorly water soluble clonazepam (CLZ) by formulating polymer stabilized amorphous solid dispersions (ASDs) using melting and co-precipitation methods. The study systematically evaluates the effect of various hydrophilic polymers at different drug to polymer ratios on the physicochemical properties, dissolution behavior, and stability of the resulting solid dispersions (SDS). This research aims to optimize polymer selection and preparation techniques to improve the bioavailability and therapeutic efficacy of clonazepam, addressing current gaps in comparative studies of polymer based solubility enhancement strategies for this drug.

Methods: SDS of CLZ were prepared using melting and co-precipitation methods with four hydrophilic polymers (HPMC K4MCR, PEG 6000, Methocel K15, and Kollidon Cl) at drug to polymer ratios of 1:1, 1:3, and 1:5. The formulations were characterized through in vitro dissolution studies, drug content analysis, and structural evaluations using Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), and Scanning Electron Microscopy (SEM)

Results: The pure CLZ showed limited solubility (51 ± 0.577%) at 60 minutes, whereas polymer ASDs significantly enhanced drug release. The PEG 6000 based formulation (ASD9, 1:5 ratio) exhibited the highest improvement (80.95 ± 0.460%), followed by HPMC K4MCR (ASD3, 75.95 ± 0.033%). Enhanced dissolution is attributed to increased carrier content and inhibition of crystallisation. FTIR and DSC analyses confirmed the absence of chemical interaction, while SEM demonstrated drug amorphisation, supporting improved solubility. ADMET analysis indicated the suitability of clonazepam for solubility enhancement via solid dispersion systems.

Conclusion: Polymer stabilized ASDs improved the aqueous solubility and in vitro dissolution rate of CLZ. Among the polymers tested, PEG 6000 demonstrated the most favourable performance, improving drug release and stability without evidence of chemical interaction. These findings suggest that this approach may hold promise for enhancing the bioavailability and therapeutic efficacy of poorly water-soluble drugs, such as CLZ, although further in vivo studies are needed to confirm these effects.

References

1.Patel R, Purohit N. Physico-chemical characterization and in vitro dissolution assessment of clonazepam—cyclodextrins inclusion compounds. Aaps Pharmscitech. 2009;10(4):1301-12.https://doi.org/10.1208/s12249-009-9321-3

2.Rahman A, Haider MF, Naseem N, Rahman N. Solubility of drugs, their enhancement, factors affecting and their limitations: a review. Int. J. Pharm. Sci. Rev. Res. 2023;79:78-94.http://dx.doi.org/10.47583/ijpsrr.2023.v79i02.014

3.Loh ZH, Samanta AK, Heng PW. Overview of milling techniques for improving the solubility of poorly water-soluble drugs. Asian journal of pharmaceutical sciences. 2015;10(4):255-74.https://doi.org/10.1016/j.ajps.2014.12.006

4.Choi MJ, Woo MR, Choi HG, Jin SG. Effects of polymers on the drug solubility and dissolution enhancement of poorly water-soluble rivaroxaban. International Journal of Molecular Sciences. 2022;23(16):9491.https://doi.org/10.3390/ijms23169491

5.Frank DS, Matzger AJ. Probing the interplay between amorphous solid dispersion stability and polymer functionality. Molecular pharmaceutics. 2018;15(7):2714-20.https://doi.org /10.1021/acs.molpharmaceut.8b00219.

6.Zhao P, Han W, Shu Y, Li M, Sun Y, Sui X, Liu B, Tian B, Liu Y, Fu Q. Liquid–liquid phase separation drug aggregate: Merit for oral delivery of amorphous solid dispersions. Journal of Controlled Release. 2023;353:42-50.https://doi.org /10.1016/j.jconrel.2022.11.033.

7.Zhang J, Guo M, Luo M, Cai T. Advances in the development of amorphous solid dispersions: The role of polymeric carriers. Asian journal of pharmaceutical sciences. 2023;18(4):100834..https://doi.org/10.1016/j.ajps.2023.100834

8.Patel K, Shah S, Patel J. Solid dispersion technology as a formulation strategy for the fabrication of modified release dosage forms: A comprehensive review. DARU Journal of Pharmaceutical Sciences. 2022 ;30(1):165-89. https://doi.org /10.1007/s40199-022-00440-0.

9.Deshmukh K, Ahamed MB, Deshmukh RR, Pasha SK, Bhagat PR, Chidambaram K. Biopolymer composites with high dielectric performance: interface engineering. InBiopolymer composites in electronics 2017; 27-128.https://doi.org/10.1016/B978-0-12-809261-3.00003-6

10.Chaurasiya AK, Ansary J, Rahaman MS, Alam ME. Preparation and in-vitro evaluation of lamivudine matrix tablets for oral sustained release drug delivery system using Methocel K15M CR polymer. International Journal of Pharmaceutical Sciences and Research. 2015 ;6(1):164.http://dx.doi.org/10.13040/IJPSR.0975-8232.6(1).164-71

11. Pratik J, Rupesh T, Raosaheb S. A brief review on Kollidon. Journal of Drug Delivery & Therapeutics. 2019;9(2):493-500. https://doi.org/10.22270/jddt.v9i2.2539

12.Biswal S, Sahoo J, Murthy PN, Giradkar RP, Avari JG. Enhancement of dissolution rate of gliclazide using solid dispersions with polyethylene glycol 6000. AapsPharmscitech. 2008;9(2):563-70.https://doi.org /10.1208/s12249-008-9079-z.

13.Kar M, Chourasiya Y, Maheshwari R, Tekade RK. Current developments in excipient science: implication of quantitative selection of each excipient in product development. InBasic fundamentals of drug delivery 2019; 29-83.https://doi.org/10.1016/B978-0-12-817909-3.00002-9

14.Malkawi R, Malkawi WI, Al-Mahmoud Y, Tawalbeh J. Current trends on solid dispersions: past, present, and future. Advances in Pharmacological and Pharmaceutical Sciences. 2022; (1):5916013.https://doi.org/10.1155/2022/5916013.

15.Soltanpour S, Bastami Z, Sadeghilar S, Kouhestani M, Pouya F, Jouyban A. Solubility of clonazepam and diazepam in polyethylene glycol 200, propylene glycol, N-methyl pyrrolidone, ethanol, and water at (298.2 to 318.2) K and in binary and ternary mixtures of polyethylene glycol 200, propylene glycol, and water at 298.2 K. Journal of Chemical & Engineering Data. 2013;58(2):307-14.https://doi.org/10.1021/je3009842

16.Dangre PV, Godbole MD, Ingale PV, Mahapatra DK. Improved dissolution and bioavailability of eprosartan mesylate formulated as solid dispersions using conventional methods. Indian Journal of Pharmaceutical Education and Research. 2016 ;50(3):S209-17.. https://doi.org /10.5530/ijper.50.3.31

17.Azad AK, Jahan K, Sathi TS, Sultana R, Abbas SA, Uddin AB. Improvement of dissolution properties of albendazole from different methods of solid dispersion. Journal of Drug Delivery & Therapeutics. 2018;8(5):475-80.. https//doi.org/10.22270/jddt.v8i5.1942

18.Jahan K, Akter M, Bhowmick T, Rashid MH, Tasnim S, Rimi RR. Effects of various polymers on dissolution improvement of fabricated amorphous clonazepam solid dispersion-an in vitro study. Malaysian Journal of Pharmaceutical Sciences. 2024;22(2):81-95.https://doi.org/10.21315/mjps2024.22.2.6

19.Mayersohn M, Gibaldi M. New method of solid-state dispersion for increasing dissolution rates. Journal of pharmaceutical sciences. 1966;55(11):1323-4. https:// doi.org/: 10.1002/jps.2600551138.

20.Sonali D, Tejal S, Vaishali T, Tejal G. Silymarin-solid dispersions: characterization and influence of preparation methods on dissolution. Acta Pharmaceutica. 2010;60(4):427-43. https:// doi.org/: 10.2478/v10007-010-0038-3.

21.Mayuri S, Ravindranath S. Solubility enhancement, formulation development and evaluation of immediate-release tablet of antihypertensive drug tadalafil. J Drug Delivery Thera. 2018 ;8:294-302..http://dx.doi.org/10.22270/jddt.v8i5.1872

22.Neupane S, Thapa C. Formulation and enhancement of dissolution rate of poorly aqueous soluble drug Aceclofenac by solid dispersion method: In vitro study. African Journal of Pharmacy and Pharmacology. 2020 ;14(1):1-8.https:// doi.org/: 10.5897/AJPP2019.5104

23.Mohana M, Vijayalakshmi S. Development and characterization of solid dispersion-based orodispersible tablets of cilnidipine. Beni-Suef University Journal of Basic and Applied Sciences. 2022;11(1):83.https://doi.org/10.1186/s43088-022-00259-3

24.Gangane PS, Ghughuskar SH, Mahapatra DK, Mahajan NM. Evaluating the role of Celosia argentea powder and fenugreek seed mucilage as natural super-disintegrating agents in gliclazide fast disintegrating tablets. Int J Curr Res Rev. 2020;12(17):101-8.https:// doi.org/:10.31782/IJCRR.2020.12173

25.Ali IS, Sajad UA, Abdul Rasool BK. Solid dispersion systems for enhanced dissolution of poorly water-soluble candesartan cilexetil: In vitro evaluation and simulated pharmacokinetics studies. Plos one. 2024 Jun 6;19(6):e0303900..https://doi.org/10.1371/journal.pone.0303900

26.Gangane PS, Mule VM, Mahapatra DK, Mahajan NM, Sawarkar HS. Development of fenofibrate solid dispersions for the plausible aqueous solubility augmentation of this BCS class-II drug. Int J Curr Res Rev. 2021;13(10):107-6. https:// doi.org/: 10.31782/IJCRR.2021.131006

27.Upadhyay S, Shende R, Parmar T, Gupta C. Optimization of metoclopramide fast-dissolving tablets: formulation, development, and evaluation. Panacea Journal of Pharmacy and Pharmaceutical Sciences.2023;12(4): 12-21

28. Bolourchian N, Mahboobian MM, Dadashzadeh S. The effect of PEG molecular weights on dissolution behavior of simvastatin in solid dispersions. Iranian journal of pharmaceutical research: IJPR. 2013;12(Suppl):11.

29.Sánchez-Aguinagalde O, Sanchez-Rexach E, Polo Y, Larrañaga A, Lejardi A, Meaurio E, Sarasua JR. Physicochemical Characterization and In Vitro Activity of Poly (ε-Caprolactone)/Mycophenolic Acid Amorphous Solid Dispersions. Polymers. 2024;16(8):1088.https://doi.org/10.3390/polym16081088.

30.Vijayalakshmi S, Subramanian S, Malathi S. Hansen Solubility Parameter Approach in the Screening of Lipid Excipients for the Development of Lipid Nano Carriers. Indian Journal of Pharmaceutical Education and Research. 2025;59(1s):s71-80. http://doi.org/ 10.5530/ijper.20254852

31.Klueppelberg J, Handge UA, Thommes M, Winck J. Composition dependency of the Flory–Huggins interaction parameter in drug–polymer phase behavior. Pharmaceutics. 2023;15(12):2650. http://doi.org/ 10.3390/pharmaceutics15122650

32.Dhawale P, Mahajan NM, Mahapatra DK, Mahajan UN, Gangane PS. HPMC K15M and Carbopol 940 mediated fabrication of ondansetron hydrochloride intranasal mucoadhesive microspheres. Journal of Applied Pharmaceutical Science. 2018 Aug 31;8(8):075-83.https:// doi.org/: 10.7324/JAPS.2018.8812

33.Gill P, Moghadam TT, Ranjbar B. Differential scanning calorimetry techniques: applications in biology and nanoscience. Journal of biomolecular techniques: JBT. 2010;21(4):167.

34.Fitriani L, Afriyanti I, Ismed F, Zaini E. Solid Dispersion of Usnic acid-HPMC 2910 Prepared by Spray drying and Freeze drying Techniques. Oriental Journal of Chemistry. 2018 ;34(4).https://doi.org/10.13005/ojc/3404048

35.Debnath P, Roy UK, Zaman F, Mukherjee PK, Kard A. Exploring the Cucurbitacin E (CuE) as an Anti-Lung Cancer Lead Compound through Molecular Docking, ADMET, Pass Prediction and Drug Likeness Analysis. Tropical Journal of Natural Product Research. 2024;8(2).https://doi.org/10.26538/tjnpr/v8i2.24

Published

29-11-2025

How to Cite

JAHAN, K., BHOWMICK, T., FERDOUSI, J., HOSSAIN, S., & SHUVO, N. H. (2025). POLYMER STABILIZED AMORPHOUS DISPERSIONS OF CLONAZEPAM: CHARACTERIZATION AND IN VITRO DISSOLUTION ANALYSIS. International Journal of Applied Pharmaceutics, 18(1). https://doi.org/10.22159/ijap.2026v18i1.56438

Issue

Section

Original Article(s)

Similar Articles

<< < 3 4 5 6 7 > >> 

You may also start an advanced similarity search for this article.