QBD-DRIVEN DESIGN AND PHARMACOKINETIC PROFILING OF REMOGLIFLOZIN ETABONATE SUSTAINED-RELEASE MATRIX TABLETS FOR DIABETES MANAGEMENT

Authors

  • MUSKAN A. KHAN Department of Pharmaceutics, Pravara Rural Education Society’s, College of Pharmacy (For Women), Chincholi-422102, Nashik, Maharashtra, India. Department of Pharmaceutics, JMCT Institute of Pharmacy, Nashik-422214, Maharashtra, India https://orcid.org/0009-0002-6277-7563
  • SACHIN B. SOMWANSHI Department of Pharmaceutics, Pravara Rural Education Society’s, College of Pharmacy (For Women), Chincholi-422102, Nashik, Maharashtra, India https://orcid.org/0000-0002-9131-6910
  • KAVERI T. VADITAKE Department of Pharmaceutical Chemistry, Pravara Rural Education Society’s, College of Pharmacy (For Women), Chincholi-422102, Nashik, Maharashtra, India https://orcid.org/0000-0002-9182-1159
  • KIRAN B. KOTADE Department of Pharmacology, Pravara Rural Education Society’s, College of Pharmacy (For Women), Chincholi-422102, Nashik, Maharashtra, India https://orcid.org/0000-0002-7066-2646

DOI:

https://doi.org/10.22159/ijap.2026v18i1.56445

Keywords:

Remogliflozin etabonate, Sustained-release matrix tablet, Quality by design, Pharmacokinetics, Eudragit L100, MCC

Abstract

Objective: With an emphasis on type 2 diabetes treatment, this work applied a QbD-based framework to design and optimize sustained release Remogliflozin etabonate tablets, intending to enhance therapeutic effectiveness and patient adherence for type 2 diabetes management.

Methods: The study implemented a full factorial design to explore how Eudragit L100 and microcrystalline cellulose influence drug release and tablet hardness. The formulations were developed via direct compression and subjected to comprehensive evaluation, including pre- and post-compression properties, dissolution kinetics, compatibility, stability, and in-vivo pharmacokinetic behavior in Wistar rats. Statistical analysis and formulation optimization were executed using Design Expert® software.

Results: All formulations met pharmacopoeial quality standards. The optimized formulation (F5) demonstrated 99.26 ± 0.65 % cumulative drug release within 10 h, with release kinetics best fitting the Korsmeyer-Peppas model with a correlation coefficient of R² = 0.9976, indicating anomalous diffusion. Pharmacokinetic studies revealed significantly lower Cmax (94.62 ± 4.3 ng/mL vs. 127.51 ± 6.1 ng/mL, p < 0.01), prolonged Tmax (5.84 ± 1.28 h vs. 1.99 ± 0.34 h, p < 0.001), and enhanced systemic exposure (AUC₀–t: 2176.39 ± 48.13 vs. 1987.96 ± 37.24 ng h/mL, p < 0.05; AUC₀–∞: 2598.81 ± 73.42 vs. 2263.35 ± 56.62 ng h/mL, p < 0.05). The half-life of the optimized SR-matrix tablets (7.64 ± 0.17 h) was significantly extended compared to the marketed reference tablet (5.93 ± 0.28 h, p < 0.05). Accelerated stability testing confirmed consistent physical and chemical attributes over 6 mo.

Conclusion: The QbD-driven approach successfully optimized RE SR-matrix tablets with robust sustained release behavior, improved pharmacokinetic performance, and satisfactory stability. These findings suggest the formulation as a promising strategy for sustained glycemic control and improved patient compliance in type 2 diabetes therapy.

References

1. Sune PR, Jumde KS, Hatwar PR, Bakal RL, Korde AV. Advances in oral controlled release drug delivery systems. GSC Biological and Pharmaceutical Sciences. 2024;29:286-297. doi: 10.30574/gscbps.2024.29.3.0475

2. Bhutani U, Basu T, Majumdar S. Oral Drug Delivery: Conventional to Long Acting New-Age Designs. European Journal of Pharmaceutics and Biopharmaceutics. 2021; 162: 23-42. doi: 10.1016/j.ejpb.2021.02.008

3. Park K. Controlled drug delivery systems: past forward and future back. Journal of controlled release. 2014 Sep 28;190:3-8. doi: 10.1016/j.jconrel.2014.03.054

4. Ghosh TK, Jasti BR. Theory and practice of Contemporary Pharmaceutics. In Akala EO (Eds.), Oral Controlled Release Solid Dosage Forms. CRC PRESS. 2005:333-365

5. Purohita HS, Zhoub D, Yua M, Zaroudic M, Oberoia H, Angelica de L et al. Proof-of-Concept in Developing a 45% Drug Loaded Amorphous Nanoparticle Formulation. Journal of Pharmaceutical Sciences. 2024;113:1007-1019. doi: 10.1016/j.xphs.2023.10.012

6. Adepu S, Ramakrishna S. Controlled Drug Delivery Systems: Current Status and Future Directions. Molecules. 2021 Sep 29;26(19):5905. doi: 10.3390/molecules26195905

7. Prajapat P, Agrawal D, Gaurav Bhaduka G. A Brief Overview of Sustained Released Drug Delivery System. Journal of Applied Pharmaceutical Research. 2022;10(3:)05-11.

8. Loke YH, Jayakrishnan A, Mod Razif MRF, Yee KM, Kee PE, Goh BH, Helal Uddin ABM, Lakshminarayanan V, Liew KB. A Comprehensive Review of Challenges in Oral Drug Delivery Systems and Recent Advancements in Innovative Design Strategies. Current Pharmaceutical Design. 2025;31(5):360-376. doi: 10.2174/0113816128338560240923073357

9. Aulton ME and Taylor KMG. Aulton's Pharmaceutics: The Design and Manufacture of Medicines. In McConnell EL, Madla CM and Basit AW (Eds.), Modified-release oral drug delivery. (6th Edition). Elsevier. 2021:542-557.

10. Goyal S, Agarwal G, Agarwal S, Karar P. Oral Sustained Release Tablets: An Overview with a special emphasis on Matrix Tablet. American Journal of Advanced Drug Delivery. 2017;5(2). doi: 10.21767/2321-547X.1000013

11. Kanojia N, Singh S, Sharma N. Development of Sustained Release Eudragit Based Matrix Tablet of Fluvastatin Sodium Microspheres. Indian Journal of Pharmaceutical Sciences. 2021: 83(6):1229-1242. doi: 10.36468/pharmaceutical-sciences.878

12. Shetty P, Kumar R, Yamunappa, Suvarna P, Swamy VB. Design and Evaluation of Sustained Release Matrix Tablets of Etodolac. Asian Journal of Pharmacy and Technology. 2016;6(1):01-14. doi: 10.5958/2231-5713.2016.00001.5

13. Mohan V, Mithal A, Joshi SR, Aravind SR, Chowdhury S. Remogliflozin Etabonate in the Treatment of Type 2 Diabetes: Design, Development, and Place in Therapy. Drug Design, Development and Therapy. 2020 Jun 24;14:2487-2501. doi: 10.2147/dddt.s221093

14. Viswanathan M, Mithal A, Joshi S, Sosale A, Chowdhury S. Remogliflozin Etabonate in the Treatment of Type 2 Diabetes: Design, Development, and Place in Therapy. Drug Design, Development and Therapy. 2020;14:2487-2501. doi: 10.2147/DDDT.S221093

15. Grangeia HB, Silva C, Sergio SP, Marco R. Quality by Design in Pharmaceutical Manufacturing: a systematic review of current status, challenges and future perspectives. European Journal of Pharmaceutics and Biopharmaceutics. 2019;147:19-37. doi: 10.1016/j.ejpb.2019.12.007

16. Parshuramkar P, Khobragade D, Kashyap P. Comprehension of Quality by Design in the Development of Oral Solid Dosage Forms. Journal of Young Pharmacists, 2023; 15(3):406-418. doi: 10.5530/jyp.2023.15.56

17. Simao J, Chaudhary SA, Ribeiro AJ. Implementation of Quality by Design (QbD) for development of bilayer tablets. European Journal of Pharmaceutical Sciences. 2023;184:106412. doi.: 10.1016/j.ejps.2023.106412

18. Dinde M, Galgatte U, Shaikh F. Development and Evaluation of Cinnarizine Loaded Nanosponges: Pharmacodynamic and Pharmacokinetic Study on Wistar Rats. International Journal of Pharmaceutical Sciences Review and Research. 2020 Dec 15;65(2):96–105. doi: 10.47583/ijpsrr.2020.v65i02.015

19. Amsa P, Mathan GK, Magibalan S, Velliyangiri EK, Kalaivani T, Priya S. Formulation and Evaluation of Gabapentin Sustained Release Matrix Tablet Using Hibiscus rosa sinensis Leaves Mucilage as Release Retardant. Journal of Pharmaceutical Research International. 2021 Dec 16;33(58B):564–72. doi: 10.9734/JPRI/2021/v33i58B34238

20. Kumari S, Puri A, Dev D, Prasad DN, Monika. Formulation and evaluation of sustained release matrix tablet of metoprolol succinate by using xanthan gum and carbopol. Journal of Drug Delivery and Therapeutics. 2019; 9(3-s):309-316. doi: 10.22270/jddt.v9i3-s.2844

21. Nikam BA, Gayke AU. Formulation Development and Evaluation of Immediate Release Tablet of Paracetamol and Orphenadrine Citrate by Direct Compression Method. The Journal of Science and Arts. 2022 Sep 30;22(3):735–54. doi: 10.46939/j.sci.arts-22.3-b04

22. Patel P, Dave A, Vasava A, Patel P. Formulation and characterization of sustained release dosage form of moisture sensitive drug. International Journal of Pharmaceutical Investigation. 2015;5(2):92. doi: 10.4103/2230-973x.153385

23. Zhu Y, Yu J, Zhou G, Gu Z, Adu-Frimpong M, Deng W, et al. Piperine fast disintegrating tablets comprising sustained-release matrix pellets with enhanced bioavailability: formulation, in vitro and in vivo evaluation. Pharmaceutical Development and Technology. 2020 Feb 11;25(5):617–24. doi: 10.1080/10837450.2020.1725892

24. Jha Sk, Devanna V, Parameshwar K, Reddy MR. Formulation Development and Evaluation of Vildagliptin Sustained Release Tablet. International Journal of Drug Delivery Technology 2018; 8(4); 180-186. doi: 10.25258/ijddt.8.4.5

25. Gunda RK. Design, development, and in vitro evaluation of sustained release tablet formulations of olmesartan medoxomil. MOJ Drug Design Development & Therapy. 2018 Jun 22;2(3):164-169. doi: 10.15406/mojddt.2018.02.00043

26. Sandhan S, Sapra K, Mor J. Formulation and Evaluation of sustained release matrix tablets of Glipizide. Indian Journal of Pharmaceutical and Biological Research. 2013;1(04):89-4. doi:10.30750/ijpbr.1.4.16

27. Zhao Y, Xin T, Ye T, Yang X, Pan W. Solid dispersion in the development of a nimodipine delayed-release tablet formulation. Asian Journal of Pharmaceutical Sciences. 2014 Feb;9(1):35–41. doi: 10.1016/j.ajps.2013.11.006

28. Ekenna IC, Abali SO. Comparison of the Use of Kinetic Model Plots and DD Solver Software to Evaluate the Drug Release from Griseofulvin Tablets. Journal of Drug Delivery and Therapeutics. 2022; 12(2-s):5-13. doi:10.22270/jddt.v12i2-s.5402.

29. Gupta SK and Patra S. Development, characterization and pharmacokinetic evaluation of optimized vildagliptin sustained release matrix tablet using box-behnken design. International Journal of Applied Pharmaceutics. 2024;16(1):214–233.

doi.org/10.22159/ijap.2024v16i1.48052

30. Zahn M. Global stability practices. In: Huynh-Ba K, editor. Handbook of Stability Testing in Pharmaceutical Development. USA: Springer; 2009. p. 90.

31. Tamilselvi N, Kanagapriya K. Bioequivalence Study and Bioanalytical Method Development of Remogliflozin etabonate tablets in wistar rat plasma using RP-HPLC Method. Research Journal of Pharmacy and Technology. 2024;17(2):789-4. doi: 10.52711/0974-360X.2024.00122

32. Ashwin K and Reddy TRM. In vivo Evaluation of Quinapril Trilayered Matrix Tablets. Asian Journal of Pharmaceutical and Clinical Research. 2021;14(7):117–125. doi.:10.22159/ajpcr.2021.v14i7.42002

33. Inturi R., Raju M. D., Basaveswara Rao M. V, Inturi S. Pharmacokinetic investigation of remogliflozin in rat plasma samples by high-throughput HPLC-MS-MS. International Journal of Applied Pharmaceutics. 2022;14(6):178–185. doi.:10.22159/ijap.2022v14i6.45700

34. Datta A, Maity S, Ghosh MK, Hazra K. Design, Characterisation and Evaluation of Sustained Release Formulation of Remogliflozin Etabonate. Asian Journal of Pharmaceutical Research and Development. 2024;12(6):18-24. doi: 10.22270/ajprd.v12i6.1431

35. Jivraj I I, Martini LG, Thomson CM. An overview of the different excipients useful for the direct compression of tablets. Pharmaceutical Science and Technology Today. 2000 Feb;3(2):58-63. doi.:10.1016/s1461-5347(99)00237-0

36. Ceballos A, Cirri M, Maestrelli F, Corti G, Mura P. Influence of formulation and process variables on in vitro release of theophylline from directly-compressed Eudragit matrix tablets. Farmaco. 2005;60(11–12):913-918. doi:10.1016/j.farmac.2005.07.002

37. Zhao H, Zhao L, Lin X, Shen L. An update on microcrystalline cellulose in direct compression: Functionality, critical material attributes, and co-processed excipients. Carbohydrate Polymers. 2022 Feb 15;278:118968. doi.:10.1016/j.carbpol.2021.118968

38. Shi C, Zhao H, Fang Y, Shen L, Zhao L. Lactose in Tablets: Functionality, Critical Material Attributes, Applications, Modifications and Co-Processed Excipients. Drug Discovery Today. 2023;28,:103696. doi.:10.1016/j.drudis.2023.103696

39. LaraGarcia RA, Afonso Urich JA, Afonso Urich AI, Jeremic D, Khinast J. Application of Lactose Co-Processed Excipients as an Alternative for Bridging Pharmaceutical Unit Operations: Manufacturing an Omeprazole Tablet Prototype via Direct Compression. Scientia Pharmaceutica. 2025;93:24. doi.:10.3390/scipharm93020024

40. Ram D, and Pankhaniya H. Formulation, Evaluation and Optimization of Sustained-Release Drug Delivery System of Cisapride Tablet. International Journal of Pharmacy and Pharmaceutical Sciences. 2021;13(9):56–62. doi.:10.22159/ijpps.2021v13i9.41799

41. Zhang Y, Law Y, Chakrabarti S. Physical properties and compact analysis of commonly used direct compression binders. AAPS PharmSciTech. 2003 Dec 15;4(4):E62. doi: 10.1208/pt040462

42. Ohwoavworhua FO, Adelakun TA. Some Physical Characteristics of Microcrystalline Cellulose Obtained from Raw Cotton of Cochlospermum planchonii. Tropical Journal of Pharmaceutical Research. 2005;4(2):501-507. doi: 10.4314/tjpr.v4i2.5

43. Alam S, Bishal A, Bandyopadhyay B. Formulation And Evaluation Of Metformin Hydrochloride Sustained Release Matrix Tablets. International Journal of Current Pharmaceutical Research. 2021;13:82-88. doi.:10.22159/ijcpr.2021v13i5.1899

44. Kapur A, O'Connor-Semmes R, Hussey EK, Dobbins RL, Tao W, Hompesch M, Smith GA, Polli JW, James CD Jr, Mikoshiba I, Nunez DJ. First human dose-escalation study with remogliflozin etabonate, a selective inhibitor of the sodium-glucose transporter 2 (SGLT2), in healthy subjects and in subjects with type 2 diabetes mellitus. BMC Pharmacology and Toxicology. 2013 May 13;14:26. doi.:10.1186/2050-6511-14-26

Published

30-10-2025

How to Cite

KHAN, M. A., SOMWANSHI, S. B., VADITAKE, K. T., & KOTADE, K. B. (2025). QBD-DRIVEN DESIGN AND PHARMACOKINETIC PROFILING OF REMOGLIFLOZIN ETABONATE SUSTAINED-RELEASE MATRIX TABLETS FOR DIABETES MANAGEMENT. International Journal of Applied Pharmaceutics, 18(1). https://doi.org/10.22159/ijap.2026v18i1.56445

Issue

Section

Original Article(s)

Similar Articles

<< < 12 13 14 15 16 > >> 

You may also start an advanced similarity search for this article.