NANOPARTICLE PREPARATION OF SNAKEHEAD FISH EXTRACT (CHANNA STRIATA) BY IONIC GELATION METHOD USING SODIUM ALGINATE AS POLYMER

Authors

  • WINTARI TAURINA Departement of Pharmacy, Faculty of Medicine, Tanjungpura University, Pontianak, West Kalimantan, Indonesia
  • MOHAMAD ANDRIE Departement of Pharmacy, Faculty of Medicine, Tanjungpura University, Pontianak, West Kalimantan, Indonesia

DOI:

https://doi.org/10.22159/ijap.2026v18i1.56622

Keywords:

Snakehead fish extract, Nanoparticles, Ionic gelation, Sodium alginate

Abstract

Objective: The extract from the snakehead fish (Channa striata) is a rich source of albumin, a protein recognized for its wound healing properties. In this study, we developed albumin-loaded nanoparticles using sodium alginate as the polymer matrix. We also examined how varying sonication durations affected the characteristics of the nanoparticles.

Methods: Nanoparticles were prepared using ionic gelation using 0.1% sodium alginate and 0.01% calcium chloride (CaCl₂) as a cross-linker, stirred for 2 hours at 1500 rpm, and sonicated for 1 hour (Formula 1) or 2 hours (Formula 2) using 45Hz frequency. After freeze-drying, characterization included visual appearance, %transmittance, particle size, and polydispersity index. Scanning electron microscope (SEM) and entrapment efficiency tests further evaluated the optimal formula.

Results: There were notable differences in the characteristics of the nanoparticles between F1 and F2. F1 exhibited an average transmittance of 93.22%, a particle size of 606.43 nm, and a polydispersity index of 0.563. In contrast, F2 demonstrated a higher transmittance of 99.41%, a smaller particle size of 483.26 nm, and a slightly lower polydispersity index of 0.558. Statistical analysis revealed a significant difference (p < 0.05) between the two formulations. F2 was identified as the optimal formulation, achieving an entrapment efficiency of 96.63%, a zeta potential of -24.6 mV, and exhibiting a wrinkled particle morphology with aggregates visible at 10.000x magnification. The optimal ultrasonication time depends on how effectively the process dissolves and distributes the ingredients evenly, as longer mixing reduces the particle size.

Conclusion: Snakehead fish extract nanoparticles prepared with 0.1% sodium alginate and 2 hours of sonication (F2) showed the best characteristics. After 7 days, the solution remained slightly cloudy with a few floating particles and a distinctive fish odor. The average %transmittance was 99.406%, particle size 483.266 nm, polydispersity index 0.558, zeta potential -24.6 ± 0.294 mV, and entrapment efficiency 96.63 ± 0.11%. SEM at 5000x and 10.000x magnification revealed mostly spherical, dense particles with rough surfaces.

References

1. Y. M. Windy, K. N. Dilla, J. Claudia, N. Noval, dan A. R. Hakim, “Karakterisasi dan Formulasi Nanopartikel Ekstrak Tanaman Bundung (Actinoscirpus grossus) dengan Variasi Konsentrasi Basis Kitosan dan Na-TPP Menggunakan Metode Gelasi Ionik,” J. Surya Med., vol. 8, no. 3,hal. 25–29, 2022, doi: 10.33084/jsm.v8i3.4495.

2. W. Taurina, R. Sari, U. C. Hafinur, S. Wahdaningsih, dan I. Isnindar, “Optimization Of Stirring Speed And Stirring Time Toward Nanoparticle Size of Chitosan-Siam Citrus Peel (Citrus Nobilis L.Var Microcarpa) 70% Ethanol Extract,” Maj. Obat Tradis., vol. 22, no. 1, hal. 16, Apr 2017, doi: 10.22146/tradmedj.24302.

3. M. Prihantini, E. Zulfa, L. D. Prastiwi, dan I. D. Yulianti, “Pengaruh Waktu Ultrasonikasi Terhadap Karakteristik Fisika Nanopartikel Kitosan Ekstrak Etanol Daun Suji (Pleomele angustifolia) Dan Uji Stabilitas Fisika Menggunakan Metode Cycling Test,” J. Ilmu Farm. dan Farm. Klin., vol. 16, no. 02, hal. 125–133, 2020, doi: 10.31942/jiffk.v16i02.3237.

4. Z. Németh et al., “Quality by Design-Driven Zeta Potential Optimisation Study of Liposomes with Charge Imparting Membrane Additives,” Pharmaceutics, vol. 14, no. 9, 2022, doi: 10.3390/pharmaceutics14091798.

5. S. R. Guge, A. Lukum, dan W. R. Kunusa, “Pembuatan Nano Kitosan Dengan Menggunakan Metode Gelasi Ionik,” Jambura J. Chem., vol. 6, no. 1, hal. 1–8, 2024, [Daring]. Tersedia pada: https://ejurnal.ung.ac.id/index.php/jjc/article/view/21843.

6. Y. Juliantoni, W. Hajrin, dan W. A. Subaidah, “Nanoparticle Formula Optimization of Juwet Seeds Extract (Syzygium cumini) using Simplex Lattice Design Method,” J. Biol. Trop., vol. 20, no. 3, hal. 416–422, 2020, doi: 10.29303/jbt.v20i3.2124.

7. A. Daskar, P. I. Utami, I. Y. Astuti, dan F. Antoni, “Formulasi Dan Karakterisasi Nanopartikel Ekstrak Daun Senggani (Melastoma malabathricum L.) Pada Berbagai Variasi Komposisi Kitosan Dengan Metode Gelasi Ionik,” J. Pharm. …, hal. 46–56, 2022, [Daring]. Tersedia pada: https://journal.aisyahuniversity.ac.id/index.php/JFA/article/download/najimis/357.

8. C. Heinritz, X. J. Ng, dan T. Scheibel, “Bio‐inspired Protein‐Based and Activatable Adhesion Systems,” Adv. Funct. Mater., vol. 34, no. 35, Agu 2024, doi: 10.1002/adfm.202303609.

9. R. Ambarwati, “Pembuatan Nanopartikel Albumin Menggunakan Metode Desolvasi Sebagai Alternatif Sistem Pembawa,” FITOFARMAKA J. Ilm. Farm., vol. 9, no. 1, hal. 35–39, 2019, doi: 10.33751/jf.v9i1.1258.

10. Arfiyanti dan D. Ariyanti, “Makanan Tambahan Ibu Hamil Untuk Mencegah Stunting Dalam Upaya Meningkatkan Kualitas Sdm Bagi Pertahanan Negara,” J. Kim. Saintek Dan Pendidik., vol. 6, no. 2, hal. 56–65, 2014, doi: 10.51544/kimia.v6i2.3494.

11. M. Andrie dan D. Sihombing, “Efektivitas Sediaan Salep yang Mengandung Ekstrak Ikan Gabus (Channa striata) pada Proses Penyembuhan Luka Akut Stadium II Terbuka pada Tikus Jantan Galur Wistar Rats,” Pharm. Sci. Res., vol. 4, no. 2, hal. 4, 2017.

12. Rosiana Waicang, R. Maria, dan T. Herawati, “Pengaruh Suplemen Ekstrak Ikan Gabus pada Pasien Nephrotic Syndrome,” J. Penelit. Kesehat. Suara Forikes, vol. 13, no. 3, hal. 600–603, 2022, [Daring]. Tersedia pada: http://forikes-ejournal.com/index.php/SF.

13. R. Tungadi dan P. Wicita, “Formulation, optimization, and characterization of snakehead fish (Ophiocephalus striatus) powder nanoemulgel,” Brazilian J. Pharm. Sci., vol. 56, no. 17337, hal. 1–8, 2020, doi: 10.1590/s2175-97902019000417337.

14. Zdzisaw ES.Food quality and standards pertaining to fish. In: Food Quality and Standards. in Encyclopedia of Life Support Systems (EOLSS), Developed under the Auspices of the UNESCO, Eolss Publishers, Paris, France. 2009; 2(10);134

15. Indonesian National Standard. SNI 2729 2021 fresh fish. Jakarta: National Standardization Agency; 2021.

16. Rahmawanty et al.(2017) ‘Nanoparticle preparation and characterization of Haruan fish (Channa striata) exctract contains albumin from south Kalimantan with ionic gelation method’, International Journal of Drug Delivery, 9(2), p. 47. doi:10.5138/09750215.2070.Salmatia S, Isamu KT, and Sartinah A. The effect of boiling and steaming process on albumin and proximate content of snakehead fish (Channa striata). J. Fish Protech. 2020;3(1):67–73. doi: 10.33772/jfp.v3i1.11606.

17. Andrie Mand Taurina W. Nanoencapsulation of ethanol extract of papaya leaf (Carica papaya linn.) using chitosan and testing its effectiveness as an anti-inflammatory. Int. J. Appl. Pharm. 2024;16(2):264–271. doi: 10.22159/ijap.2024v16i2.49992.

18. Ariani LWand Purwanto URE. Nanoparticle formulation of hibiscus leaf extract (Hibiscus rosa sinensis l.). thesis.STIFAR. SEMarang. 2021.

19. Supraba W, Juliantoni Y, and Ananto AD.The effect of stirring speeds on the entrapment efficiency in a nanoparticles formulation of java plum seed ethanol extract (Syzygium cumini). Acta Chim. Asiana. 2021;4(1):197–103. doi: 10.29303/aca.v4i1.50.

20. Betala S, Mohan V, and Abbulu K. Formulation and evaluation of polymeric nanoparticles of an antihypetensive drug for gastroretention. J. Drug Deliv. Ther. 2018;8(6):82–86. doi: 10.22270/jddt.v8i6.2018.

21. Qonitannisa S, Fadli A, and Sunarno. Synthesis of nanochitosan by ionic gelation method using acetic acid solvent with variation of chitosan concentration. J. Online Mhs. Bid. Tek. dan Sains. 2020;7(2):1–4.

22. Guge SR, Lukum A, and Kunusa WY. Nano chitosan production using ionic gelation method. Jambura J. Chem. 2024;6(1):1–8.

23. Ngafif A. Optimization of sodium alginate and calcium chloride (CaCl2) as cross-linking agents of ethanol extract nanoparticles of katuk leaves (Sauropus androgynus (l.) merr). Berk. Ilm. Mhs. Farm. Indones. 2020;7(2):13–23. doi: 10.48177/bimfi.v7i2.33.

24. Rahmatullah S, Permadi YW, and Agmarina SN. Testing of nanoparticle character ionic gelation method of extract and tablet of african leaf (Vernonia amygdalina del.). J. Wiyata. 2021;8(2):147–151.

25. Maharani P, Ikasari E, Purwanto U, andBagiana I. Optimization of na-alginate and ca-chloride in nanoparticles of purified fucoidan extract from brown seaweed (Sargassum polycystum). Pharmacy Med. J. 2022;5(2):38–45. doi: 10.35799/Pmj.V5i2.45100.

26. Picco AS, Mondo GB, Ferreira LF, de Souza EE, Peroni LA, Cardoso MB. Protein corona meets freeze drying: overcoming the challenges of colloidal stability, toxicity, and opsonin adsorption. Nanoscale. 2021;13(2):753 762. doi:10.1039/D0NR06040B) RSC Publishing.

Published

29-11-2025

How to Cite

TAURINA, W., & ANDRIE, M. (2025). NANOPARTICLE PREPARATION OF SNAKEHEAD FISH EXTRACT (CHANNA STRIATA) BY IONIC GELATION METHOD USING SODIUM ALGINATE AS POLYMER. International Journal of Applied Pharmaceutics, 18(1). https://doi.org/10.22159/ijap.2026v18i1.56622

Issue

Section

Original Article(s)

Similar Articles

<< < 3 4 5 6 7 > >> 

You may also start an advanced similarity search for this article.