DESIGN AND CHARACTERIZATION OF OPTIMIZED POLYHERBAL NANOENCAPSULATION: IN VITRO ANTIOXIDANT ACTIVITY TARGETING NRF2 AND GST PATHWAYS

Authors

  • RAFIASTIANA CAPRITASARI Doctoral Study Program of Pharmacy Sciences, Faculty of Pharmacy, Universitas Ahmad Dahlan, Indonesia. Pharmacy Department, Faculty of Health Sciences, Universitas Muhammadiyah Magelang, Indonesia
  • ARIF BUDI SETIANTO Doctoral Study Program of Pharmacy Sciences, Faculty of Pharmacy, Universitas Ahmad Dahlan, Indonesia
  • AKROM Doctoral Study Program of Pharmacy Sciences, Faculty of Pharmacy, Universitas Ahmad Dahlan, Indonesia
  • ICHWAN RIDWAN RAIS Doctoral Study Program of Pharmacy Sciences, Faculty of Pharmacy, Universitas Ahmad Dahlan, Indonesia
  • SAPTO YULIANI Doctoral Study Program of Pharmacy Sciences, Faculty of Pharmacy, Universitas Ahmad Dahlan, Indonesia

DOI:

https://doi.org/10.22159/ijap.2025.v17s3.07

Keywords:

Antioxidant activity, Chitosan-sodium tripolyphosphate, Formula optimization, In vitro method, Nanoparticle

Abstract

Objective: Antioxidants are compounds that can stop oxidation, protecting cells from the harmful effects of free radicals produced by the body's metabolism and some external sources. Flavonoid and phenolic compounds are secondary metabolites of plants that have high antioxidant activity. The secondary metabolites found in Nigella sativa seeds contain terpenoid and phenolic compounds, while the leaves of Moringa oleifera and Centella asiatica plants contain flavonoids, alkaloids, tannins, saponins, and steroids. The problem is that the extracts from Moringa oleifera and Centella asiatica have large particle sizes and poor solubility, while Nigella sativa oil contains volatile and easily oxidizable chemicals. Therefore, it is very important to create a drug delivery system that can enhance solubility and reduce particle size, one of which is nanoencapsulation. The research the aim is to determine the optimum formula in the polyherbal (Moringa oleifera, Centella asiatica and Nigella sativa) nanoencapsulation preparation as a method of drug delivery and antioxidant activity targeting Nrf2 and GST pathways using PBMC.

Methods: Nanoencapsulation of polyherbal was carried out using chitosan and sodium tripolyphosphate polymers as crosslinkers and then characterizes. Optimization formulation by design expert (factorial design). In vitro analysis as an antioxidant in the regulation of Nrf2 and GST using PBMC with the flow cytometry method.

Results: The particle size, PDI and zeta potential from the optimum formula values were found 115.463±9.563 nm; 0.49±0.050, and-29.737±1.665mV. The Nrf2 and GST enhancement activity, it is evident that the nanopolyherbal preparations with concentrations of 3% and 1% have higher Nrf2 expression values compared to the control.

Conclusion: Nanoencapsulation of polyherbal (Moringa oleifera, Centella asiatica and Nigella sativa) have good antioxidant effect by Nrf2 and GST regulation, so it can be used as drug delivery system method.

References

1. Fakriah E, Kurniasih E, Adriana R. Sosialisasi bahaya radikal bebas dan fungsi antioksidan alami bagi kesehatan. J Vokasi. 2019;3(1):1-7. doi: 10.30811/vokasi.v3i1.960.

2. Kurniawan A, Setiawan F, Yunita O. Uji aktivitas antioksidan ekstrak etanol kayu secang (Caesalpinia sappan) menggunakan metode DPPH, ABTS dan frap. Media Pharm. 2018;2(2):82-9.

3. Mendonca JD, Guimaraes RC, Zorgetto Pinheiro VA, Fernandes CD, Marcelino G, Bogo D. Natural antioxidant evaluation: a review of detection methods. Molecules. 2022;27(11):3563. doi: 10.3390/molecules27113563, PMID 35684500.

4. Xiao JL, Liu HY, Sun CC, Tang CF. Regulation of Keap1-Nrf2 signaling in health and diseases. Mol Biol Rep. 2024;51(1):809. doi: 10.1007/S11033-024-09771-4, PMID 39001962.

5. Yuan H, Xu Y, Luo Y, Wang NX, Xiao JH. Role of Nrf2 in cell senescence regulation. Mol Cell Biochem. 2021;476(1):247-59. doi: 10.1007/S11010-020-03901-9, PMID 32918185.

6. Lu Z, Zhang M, Tang M, Li Y, Shi F, Zhan F. Heme oxygenase-1 protects against inflammatory and apoptosis induced by hemeproteins in ctenopharyngodon idellus kidney cells. Aquaculture. 2022;546:737266. doi: 10.1016/j.aquaculture.2021.737266.

7. Markov AV, Sen Kova AV, Babich VO, Odarenko KV, Talyshev VA, Salomatina OV. Dual effect of soloxolone methyl on LPS-induced inflammation in vitro and in vivo. Int J Mol Sci. 2020;21(21):7876. doi: 10.3390/Ijms21217876, PMID 33114200.

8. Saha S, Buttari B, Panieri E, Profumo E, Saso L. An overview of Nrf2 signaling pathway and its role in inflammation. Molecules. 2020;25(22):5474. doi: 10.3390/Molecules25225474, PMID 33238435.

9. Marcetic M, Arsenijevic J. Antioxidant activity of plant secondary metabolites. Arh Farm. 2023;73(4):264-77. doi: 10.5937/Arhfarm73-45560.

10. Safrina U, Wardiyah W, Cartika H. Evaluation of total flavonoid, total phenolic and antioxidant activity of Etlingera elatior (Jack) R. M. Sm. flower, fruit and leaf. Trad Med J. 2022;27(1):51-9. doi: 10.22146/Mot.72210.

11. Roy A, Khan A, Ahmad I, Alghamdi S, Rajab BS, Babalghith AO. Flavonoids a bioactive compound from medicinal plants and its therapeutic applications. BioMed Res Int. 2022 Jun 6;2022:5445291. doi: 10.1155/2022/5445291, PMID 35707379.

12. Jomova K, Raptova R, Alomar SY, Alwasel SH, Nepovimova E, Kuca K. Reactive oxygen species toxicity oxidative stress and antioxidants: chronic diseases and aging. Arch Toxicol. 2023;97(10):2499-574. doi: 10.1007/S00204-023-03562-9, PMID 37597078.

13. Dalli M, Bekkouch O, Azizi SE, Azghar A, Gseyra N, Kim B. Nigella sativa L. phytochemistry and pharmacological activities: a review (2019-2021). Biomolecules. 2021;12(1):20. doi: 10.3390/biom12010020, PMID 35053168.

14. Kashyap P, Kumar S, Riar CS, Jindal N, Baniwal P, Guine RP. Recent advances in drumstick (Moringa oleifera) leaves bioactive compounds: composition, health benefits, bioaccessibility and dietary applications. Antioxidants (Basel). 2022;11(2):402. doi: 10.3390/Antiox11020402, PMID 35204283.

15. Amalia N. Update review: extraction, purification and pharmacological activities of gotu kola terpenoids. Lett Appl Nanobiosci. 2024;13(1):1-17. doi: 10.33263/LIANBS131.006.

16. Nifa K, Dewi IK, Titik Lestari D. Antioxidant activity of Moringa leaves (Moringa oleifera Lam.) ethanol extract in lotion formula with DPPH method (2,2-Diphenyl-1-Picrylhydrazil). Borobudur Pharm Rev. 2023;3(1):8-14. doi: 10.31603/Bphr.V3i1.8835.

17. Hassanpour SH, Doroudi A. Review of the antioxidant potential of flavonoids as a subgroup of polyphenols and partial substitute for synthetic antioxidants. Avicenna J Phytomed. 2023;13(4):354-76. doi: 10.22038/AJP.2023.21774, PMID 37663389.

18. Abd Karim F, Tungadi R, Thomas NA, Ekstrak Etanol BNP. 96% daun kelor (Moringa oleifera) dan uji aktivitasnya sebagai antioksidan. Indones J Pharm Educ. 2021;2(1):32-41. doi: 10.37311/Ijpe.V2i1.11725.

19. Razali NN, Ng CT, Fong LY. Cardiovascular protective effects of Centella asiatica and its triterpenes: a review. Planta Med. 2019;85(16):1203-15. doi: 10.1055/A-1008-6138, PMID 31539918.

20. Erdogan U, Yilmazer M, Erbas S. Hydrodistillation of nigella sativa seed and analysis of thymoquinone with HPLC and GC-MS. Bilge International Journal of Science and Technology Research. 2020;4(1):27-30. doi: 10.30516/bilgesci.688845.

21. Talebi M, Talebi M, Farkhondeh T, Samarghandian S. Biological and therapeutic activities of thymoquinone: focus on the Nrf2 signaling pathway. Phytother Res. 2021;35(4):1739-53. doi: 10.1002/Ptr.6905, PMID 33051921.

22. AAMS 2 Hannan, Abdul, Ataur Rahman. Black cumin (Nigella sativa L.): a comprehensive review on phytochemistry, health benefits, molecular pharmacology and safety. Nutrients. 2021 May 24;13(6):1784. doi: 10.3390/nu13061784.

23. L Suraweera T, Rupasinghe HP, Dellaire G, Xu Z. Regulation of Nrf2/ARE pathway by dietary flavonoids: a friend or foe for cancer management? Antioxidants. 2020;9(10):973. doi: 10.3390/antiox9100973, PMID 33050575.

24. Bansal K, Bhati H, Vanshita, Bajpai M. Recent insights into therapeutic potential and nanostructured carrier systems of Centella asiatica: an evidence-based review. Pharmacological Research Modern Chinese Medicine. 2024 Mar;10:100403. doi: 10.1016/j.prmcm.2024.100403.

25. Rahim MA, Shoukat A, Khalid W, Ejaz A, Itrat N, Majeed I. A narrative review on various oil extraction methods, encapsulation processes fatty acid profiles, oxidative stability and medicinal properties of black seed (Nigella Sativa). Foods. 2022;11(18):2826. doi: 10.3390/Foods11182826, PMID 36140949.

26. Kundu J, Kim DH, Kundu JK, Chun KS. Thymoquinone induces heme oxygenase-1 expression in hacat cells via Nrf2/are activation: Akt and Ampkα as upstream targets. Food Chem Toxicol. 2014 Mar;65:18-26. doi: 10.1016/j.fct.2013.12.015, PMID 24355171.

27. Teng H, Zheng Y, Cao H, Huang Q, Xiao J, Chen L. Enhancement of bioavailability and bioactivity of diet-derived flavonoids by application of nanotechnology: a review. Crit Rev Food Sci Nutr. 2023;63(3):378-93. doi: 10.1080/10408398.2021.1947772, PMID 34278842.

28. R Abdi Syahputra. Nanotechnology and flavonoids: current research and future perspectives on cardiovascular health. J Funct Foods. 2024 Apr;120(8):106355. doi: 10.1016/J.Jff.2024.106355.

29. Pizzi A. Tannins medical/pharmacological and related applications: a critical review. Sustain Chem Pharm. 2021 Sep;22:100481. doi: 10.1016/j.scp.2021.100481.

30. Yulia R, Chatri M, Handayani D. Saponins compounds as antifungal against plant pathogens senyawa saponin sebagai antifungi terhadap pathogen tumbuhan abstrak pendahuluan. Serambi Biol. 2023;8(2):162-9.

31. Zielinska Blajet M, Feder Kubis J. Monoterpenes and their derivatives: recent development in biological and medical applications. Int J Mol Sci. 2020;21(19):7078. doi: 10.3390/Ijms21197078, PMID 32992914.

32. Turkez H, Aydın E. In vitro assessment of cytogenetic and oxidative effects of α-pinene. Toxicol Ind Health. 2016;32(1):168-76. doi: 10.1177/0748233713498456, PMID 24081629.

33. Atikah N, Putri D, Lely N, Tinggi S, Farmasi I, Pertiwi B. Determination of total phenol and total flavonoid content of longan (Dimoncarpus longan lour) leaf extract dan total flavonoid extract of Daun kelengkeng (Dimoncarpus longan lour). J Ilm Farm Bahari. 2021;12(1):80-7. doi: 10.52434/jfb.v12i1.1037.

34. Khan J, Deb PK, Priya S, Medina KD, Devi R, Walode SG. Dietary flavonoids: cardioprotective potential with antioxidant effects and their pharmacokinetic, toxicological and therapeutic concerns. Molecules. 2021;26(13):4021. doi: 10.3390/Molecules26134021, PMID 34209338.

35. Qomaliyah EN, Indriani N, Rohma A, Islamiyati R. Skrining fitokimia kadar total flavonoid dan antioksidan daun cocor bebek. Curr Biochem. 2023;10(1):1-10. doi: 10.29244/cb.10.1.1.

36. Hafizah N, Nor M, Mohamed F. Preparation and characterization of Nigella sativa microemulsions. Int J Pharm Pharm Sci. 2014;6(9):485-9.

37. Astutiningsih F, Anggrahini S, Fitriani A, Supriyadi S. Optimization of saffron essential oil nanoparticles using chitosan arabic gum complex nanocarrier with ionic gelation method. Int J Food Sci. 2022;2022:4035033. doi: 10.1155/2022/4035033, PMID 35295821.

38. Watkins ER, Newbold A. Factorial designs help to understand how psychological therapy works. Front Psychiatry. 2020 May 14;11:429. doi: 10.3389/Fpsyt.2020.00429, PMID 32477195.

39. Rosidi A. The difference of curcumin and antioxidant activity ‎in Curcuma xanthorrhiza at different regions. J Adv Pharm Educ Res. 2020;10(1):14-8. doi: 10.51847/FErG2Ne.

40. Putri BM, Sugiarto, B Wasita, RP Febrinasari. Antioxidant activity of ethanol extract of secang wood (Caesalpinia sappan L.) gotu kola (Centella asiatica L.) and their combinations with DPPH assay. 2nd International Conference of Health Science and Technology. 2021;1(1):45-9. doi: 10.47701/icohetech.v1i1.1081.

41. Sabandar CW, Jalil J, Ahmat N, Aladdin NA, Nik Abdullah Zawawi NK, Sahidin I. Anti-inflammatory and antioxidant activity of Syzygium polyanthum (Wight) Walp. Sains Malays. 2022;51(5):1475-85. doi: 10.17576/Jsm-2022-5105-17.

42. Chenthamara D, Subramaniam S, Ramakrishnan SG, Krishnaswamy S, Essa MM, Lin FH. Therapeutic efficacy of nanoparticles and routes of administration. Biomater Res. 2019;23(1):20. doi: 10.1186/s40824-019-0166-x, PMID 31832232.

43. Suryani S, Nafisah A, Manaan S. Optimasi formula gel antioksidan ekstrak etanol buah bligo (benincasa hispida) dengan metode simplex lattice design (SLD). JFG. 2017;3(2):150-6. doi: 10.22487/j24428744.0.v0.i0.8815.

44. BS S, Prakash. Green synthesis of marine sponge silver nanoparticles and its antioxidant cytotoxic activity. Int J Pharm Pharm Sci. 2024;6(2):1-7. doi: 10.33545/26647222.2024.

45. Barrak H, Saied T, Chevallier P, Laroche G, Mnif A, Hamzaoui AH. Synthesis, characterization and functionalization of ZnO nanoparticles by N-(trimethoxysilylpropyl) ethylenediamine triacetic acid (TMSEDTA): investigation of the interactions between phloroglucinol and ZnO@TMSEDTA. Arab J Chem. 2019;12(8):4340-7. doi: 10.1016/j.arabjc.2016.04.019.

46. Rohman A, Ariani R. Authentication of Nigella sativa seed oil in binary and ternary mixtures with corn oil and soybean oil using FTIR spectroscopy coupled with partial least square. Scientific World Journal. 2013 Nov 11;2013:740142. doi: 10.1155/2013/740142, PMID 24319381.

47. Sugunabai J, Karpagam T. Analysis of functional compounds and antioxidant activity of Centella asiatica. World J Pharm Pharm Sci. 2015;4(8):1982-93.

48. Bello OS, Adegoke KA, Akinyunni OO. Preparation and characterization of a novel adsorbent from Moringa oleifera leaf. Appl Water Sci. 2017;7(3):1295-305. doi: 10.1007/S13201-015-0345-4.

49. Taba P, Parmitha NY, Kasim S. Sintesis nanopartikel perak menggunakan ekstrak daun salam (Syzygium polyanthum) sebagai bioreduktor dan uji aktivitasnya sebagai antioksidan synthesis of silver nanoparticles using syzygium polyanthum extract as bioreductor and the application as antioxidan. J Chem Res. 2019;7(1):51-60. doi: 10.30598/ijcr.2019.7-ptb.

50. Lalitha G, NTH. In vitro antioxidant activity and Fourier transform infrared analysis of Elaeagnus conferta Roxb. leaf extract. Asian J Pharm Clin Res. 2020;13(4):50-3. doi: 10.22159/Ajpcr.2020.V13i4.36755.

51. Udvardi B, Kovacs IJ, Fancsik T, Konya P, Batori M, Stercel F. Effects of particle size on the attenuated total reflection spectrum of minerals. Appl Spectrosc. 2017;71(6):1157-68. doi: 10.1177/0003702816670914, PMID 27671141.

52. Jazvinscak Jembrek MJ, Orsolic N, Mandic L, Sadzak A, Segota S. Anti-oxidative anti-inflammatory and anti-apoptotic effects of flavonols: targeting Nrf2, NF-κB and p53 pathways in neurodegeneration. Antioxidants (Basel). 2021;10(10):1628. doi: 10.3390/Antiox10101628, PMID 34679762.

53. Dong J, Zhang X, Wang S, Xu C, Gao M, Liu S. Thymoquinone prevents dopaminergic neurodegeneration by attenuating oxidative stress via the Nrf2/ARE pathway. Front Pharmacol. 2020;11:615598. doi: 10.3389/fphar.2020.615598, PMID 33519481.

54. Bhattacharjee S, Dashwood RH. Epigenetic regulation of Nrf2/Keap1 by phytochemicals. Antioxidants (Basel). 2020;9(9):865. doi: 10.3390/Antiox9090865, PMID 32938017.

55. Sun Y, Li Q, Huang Y, Yang Z, Li G, Sun X. Natural products for enhancing the sensitivity or decreasing the adverse effects of anticancer drugs through regulating the redox balance. Chin Med. 2024;19(1):110. doi: 10.1186/S13020-024-00982-2, PMID 39164783.

56. Chen F, Zhang HY, He D, Rao CM, Xu B. Cardioprotective effect of gynostemma pentaphyllum against streptozotocin-induced cardiac toxicity in rats via alteration of Ampk/Nrf2/Ho-1 pathway. J Oleo Sci. 2022;71(7):991-1002. doi: 10.5650/jos.ess21281, PMID 35781259.

57. Juan CA, Perez De La Lastra JM, Plou FJ, Perez Lebena E. The chemistry of reactive oxygen species (ROS) revisited: outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. Int J Mol Sci. 2021;22(9):4642. doi: 10.3390/ijms22094642, PMID 33924958.

58. Jomova K, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, Valko M. Several lines of antioxidant defense against oxidative stress: antioxidant enzymes nanomaterials with multiple enzyme mimicking activities and low molecular weight antioxidants. Arch Toxicol. 2024;98(5):1323-67. doi: 10.1007/S00204-024-03696-4, PMID 38483584.

59. Tian X, Li Y, Lei L, Feng X, Xin H, Chen H. The Tf/Nrf2/Gstp1 pathway is involved in stress-induced hepatocellular injury through ferroptosis. J Cell Mol Med. 2024;28(12):e18494. doi: 10.1111/Jcmm.18494, PMID 38890797.

60. Chen TH, Tsai MJ, Chang CS, Xu L, Fu YS, Weng CF. The exploration of phytocompounds theoretically combats SARS-Cov-2 pandemic against virus entry, viral replication and immune evasion. J Infect Public Health. 2023;16(1):42-54. doi: 10.1016/j.jiph.2022.11.022, PMID 36470006.

61. Yu QL, Duan HQ, Takaishi Y, Gao WY. A novel triterpene from Centella asiatica. Molecules. 2006;11(9):661-5. doi: 10.3390/11090661, PMID 17971739.

Published

28-08-2025

How to Cite

CAPRITASARI, R., SETIANTO, A. B., AKROM, RAIS, I. R., & YULIANI, S. (2025). DESIGN AND CHARACTERIZATION OF OPTIMIZED POLYHERBAL NANOENCAPSULATION: IN VITRO ANTIOXIDANT ACTIVITY TARGETING NRF2 AND GST PATHWAYS. International Journal of Applied Pharmaceutics, 17(3), 50–59. https://doi.org/10.22159/ijap.2025.v17s3.07

Issue

Section

Original Article(s)

Similar Articles

<< < 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.