QBD-GUIDED DESIGN OF NLC-BASED BUCCAL FILMS OF A PHYTOCONSTITUENT FOR ENHANCED CHEMOPREVENTION

Authors

  • HIMAN PATEL Department of Pharmaceutics, Babaria Institute of Pharmacy, BITS Edu Campus, Vadodara, Gujarat (India)
  • MANISHA SUNIL LALAN Department of Pharmaceutics, Parul Institute of Pharmacy & Research, Faculty of Pharmacy, Parul University, Limda, Waghodia-391760, Vadodara, Gujarat (India) https://orcid.org/0000-0003-1158-1851

DOI:

https://doi.org/10.22159/ijap.2026v18i1.56754

Keywords:

Quercetin, Chemoprevention, Hybrid system, Buccal film, Nanocarrier

Abstract

Objective: This study aimed to develop and optimize a nanostructured lipid carrier (NLC)-based hybrid buccal film of quercetin (QCT) using a Quality by Design (QbD) approach for potential chemoprevention of oral cancer.

Methods: QCT loaded NLCs were prepared via the solvent injection technique using pre-screened excipients. A Design of Experiments (DoE) framework using the Box-Behnken Design was employed to assess the influence of total lipid content, surfactant concentration, and liquid lipid proportion on critical quality attributes—namely, particle size and drug entrapment efficiency. Transmission electron microscopy (TEM) was used to analyze morphology. Bilayer hybrid buccal films were cast using ethyl cellulose as the backing layer and a blend of hydroxypropyl methylcellulose and Carbopol 934P for the drug-loaded matrix. These films were evaluated for mechanical strength, in vitro drug release, ex vivo buccal permeation, stability, and cytotoxicity using cell line studies.

Results: QCT-NLCs were successfully formulated with glyceryl monostearate (solid lipid), Transcutol HP and Capmul MCM (liquid lipids), and surfactants including soya lecithin and Poloxamer 188. DoE analysis indicated that higher surfactant levels reduced particle size, while increased lipid content enlarged particles but improved entrapment efficiency. The optimized formulation had particle size of 144 nm and entrapment efficiency of 90.21%, as verified by TEM. The resultant hybrid film demonstrated sustained drug release (80% over 8 hours), excellent tensile strength (3.93 MPa), and was stable under accelerated conditions. Ex vivo studies confirmed 72.8% buccal drug permeation in 6 hours. Cytotoxicity assays validated the formulation’s safety and chemopreventive potential.

Conclusion: The QCT-loaded NLC hybrid buccal film demonstrated potential as a safe and effective strategy for oral cancer chemoprevention.

References

1. Shahbaz M, Naeem H, Momal U, Imran M, Alsagaby SA, Al Abdulmonem W, Waqar AB, El-Ghorab AH, Ghoneim MM, Abdelgawad MA, Shaker ME.Anticancer and apoptosis inducing potential of quercetin against a wide range of human malignancies. Int J Food Prop. 2023;26(1):2590-2626. doi:10.1080/10942912.2023.2252619

2. Chen XJ, Zhang XQ, Liu Q, Zhang J, Zhou G. Nanotechnology: a promising method for oral cancer detection and diagnosis. J Nanobiotechnology. 2018 Jun 11;16(1):52. doi:10.1186/s12951-018-0378-6

3. Tomou EM, Papakyriakopoulou P, Saitani EM, Valsami G, Pippa N, Skaltsa H. Recent advances in nanoformulations for quercetin delivery. Pharmaceutics. 2023 Jun 5;15(6):1656. doi:10.3390/pharmaceutics15061656

4. Li X, Guo S, Xiong XK, Peng BY, Huang JM, Chen MF, Wang FY, Wang JN. Combination of quercetin and cisplatin enhances apoptosis in OSCC cells by downregulating xIAP through the NF-κB pathway. J Cancer. 2019 Jul 25;10(19):4509-4521. doi: 10.7150/jca.31045.

5. Wang M, Chen X, Yu F, Zhang L, Zhang Y, Chang W. The targeting of noncoding RNAs by quercetin in cancer prevention and therapy. Oxid Med Cell Longev. 2022 May 24;2022:4330681. doi:10.1155/2022/4330681

6. Tomou EM, Papakyriakopoulou P, Saitani EM, Valsami G, Pippa N, Skaltsa H. Recent advances in nanoformulations for quercetin delivery. Pharmaceutics. 2023;15(6):1656. doi:10.3390/pharmaceutics15061656

7. Sakagami H, Kobayashi M, Chien CH, Kanegae H, Kawase M. Selective toxicity and type of cell death induced by various natural and synthetic compounds in oral squamous cell carcinoma. In Vivo. 2007 Mar-Apr;21(2):311-20. PMID: 17436582.

8. Son HK, Kim D. Quercetin induces cell cycle arrest and apoptosis in YD10B and YD38 oral squamous cell carcinoma cells. Asian Pac J Cancer Prev. 2023 Jan 1;24(1):283-9. doi:10.31557/APJCP.2023.24.1.283

9. Poonia N, Kharb R, Lather V, Pandita D. Nanostructured lipid carriers: versatile oral delivery vehicle. Future Sci OA. 2016 Jul 15;2(3):FSO135. doi: 10.4155/fsoa-2016-0030.

10. Beloqui A, Solinís MÁ, Rodríguez-Gascón A, Almeida AJ, Préat V. Nanostructured lipid carriers: Promising drug delivery systems for future clinics. Nanomedicine. 2016 Jan;12(1):143-61. doi: 10.1016/j.nano.2015.09.004.

11. Salvi VR, Pawar P. Nanostructured lipid carriers (NLC) system: a novel drug targeting carrier. J Drug Deliv Sci Technol. 2019;51:255-67. doi:10.1016/j.jddst.2019.02.017

12. Müller RH, Radtke M, Wissing SA. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev. 2002 Nov 1;54 Suppl 1:S131-55. doi: 10.1016/s0169-409x(02)00118-7

13. Pardeike J, Hommoss A, Müller RH. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int J Pharm. 2009 Jan 21;366(1-2):170-84. doi: 10.1016/j.ijpharm.2008.10.003.

14. Shojaei AH. Buccal mucosa as a route for systemic drug delivery: a review. J Pharm Pharm Sci. 1998 Jan-Apr;1(1):15-30. PMID: 10942969.

15. Nafee NA, Ismail FA, Boraie NA, Mortada LM. Mucoadhesive buccal patches of miconazole nitrate: in vitro/in vivo performance and effect of ageing. Int J Pharm. 2003 Oct 2;264(1-2):1-14. doi:10.1016/s0378-5173(03)00371-5

16. Gilhotra RM, Ikram M, Srivastava S, Gilhotra N. A clinical perspective on mucoadhesive buccal drug delivery systems. J Biomed Res. 2014 Mar;28(2):81-97. doi:10.7555/JBR.27.20120136

17. Perioli L, Ambrogi V, Rubini D, Giovagnoli S, Ricci M, Blasi P, Rossi C. Novel mucoadhesive buccal formulation containing metronidazole for the treatment of periodontal disease. J Control Release. 2004 Mar 24;95(3):521-33. doi: 10.1016/j.jconrel.2003.12.018.

18. Luiz MT, Viegas JS, Abriata JP, Viegas F, de Carvalho Vicentini FT, Bentley MV, Chorilli M, Marchetti JM, Tapia-Blacido DR. Design of experiments (DoE) to develop and to optimize nanoparticles as drug delivery systems. Eur J Pharm Biopharm. 2021;165:127-48. doi: 10.1016/j.ejpb.2021.05.011

19. Lalan M, Shah P, Shah K, Prasad A. Developmental studies of curcumin NLCs as safe alternative in management of infectious childhood dermatitis. NanosciNanotechnol Asia. 2020 Aug 1;10(4):390-403. doi:10.2174/2210681209666181226153741

20. Kharwade RS, Mahajan NM. Formulation and evaluation of nanostructured lipid carriers based anti-inflammatory gel for topical drug delivery system. Asian J Pharm Clin Res. 2019;12(4):286-91. doi: 10.22159/ajpcr.2019.v12i4.32000

21. Semalty M, Semalty A, Kumar G. Formulation and characterization of mucoadhesive buccal films of glipizide. Indian J Pharm Sci. 2008 Jan;70(1):43-8. doi:10.4103/0250-474X.40330

22. Patel VN, Patel HV, Agrawal K, Soni I, Shah P, Mangrulkar SV, Umekar MJ, Lalan MS. Comprehensive developmental investigation on simvastatin enriched bioactive film forming spray using the quality by design paradigm: a prospective strategy for improved wound healing. J Drug Target. 2024;32(9):1139-53. doi:10.1080/1061186X.2024.2382405

23. Ammanage A, Rodriques P, Kempwade A, Hiremath R. Formulation and evaluation of buccal films of piroxicam co-crystals. Future J Pharm Sci. 2020;6:16. doi:10.1186/s43094-020-00033-1

24. Meher JG, Tarai M, Patnaik A, Mishra P, Yadav NP. Cellulose Buccoadhesive Film Bearing Glimepiride: Physicomechanical Characterization and Biophysics of Buccoadhesion. AAPS PharmSciTech. 2016 Aug;17(4):940-50. doi: 10.1208/s12249-015-0419-5.

25. Mukherjee D, Bharath S. Design and characterization of double layered mucoadhesive system containing bisphosphonate derivative. ISRN Pharmaceutics. 2013;2013:604690. doi:10.1155/2013/604690

26. Caon T, Simões CM. Effect of freezing and type of mucosa on ex vivo drug permeability parameters. AAPS PharmSciTech. 2011 Jun;12(2):587-92. doi:10.1208/s12249-011-9621-2

27. Suhasini SJ, Roy A, Sosa G, Lakshmi T. The cytotoxic effect of Caralluma fimbriata on Kb cell lines. Res J Pharm Technol. 2019;12(10):4995-8. doi: 10.5958/0974-360X.2019.00865.5

28. Pinheiro M, Ribeiro R, Vieira A, Andrade F, Reis S. Design of a nanostructured lipid carrier intended to improve the treatment of tuberculosis. Drug Des Devel Ther. 2016 Aug 2;10:2467-75. doi:10.2147/DDDT.S104395

29. Jaiswal P, Gidwani B, Vyas A. Nanostructured lipid carriers and their current application in targeted drug delivery. Artif Cells NanomedBiotechnol. 2016;44(1):27-40. doi:10.3109/21691401.2014.909822

30. Alam T. Quality by design-based development of nanostructured lipid carrier: a risk based approach. Explor Med. 2022;3:617-638. doi:10.37349/emed.2022.00118

31. Vakilinezhad MA, Tanha S, Montaseri H, Dinarvand R, Azadi A, Akbari Javar H. Application of response surface method for preparation, optimization, and characterization of nicotinamide loaded solid lipid nanoparticles. Adv Pharm Bull. 2018 Jun;8(2):245-56. doi:10.15171/apb.2018.029

32. Bajwa N, Mahal S, Naryal S, Singh PA, Baldi A. Development of novel solid nanostructured lipid carriers for bioavailability enhancement using a quality by design approach. AAPS PharmSciTech. 2022;23:253. doi:10.1208/s12249-022-02386-7

33. Chaudhari VS, Gawali B, Saha P, Naidu VGM, Murty US, Banerjee S. Quercetin and piperine enriched nanostructured lipid carriers (NLCs) to improve apoptosis in oral squamous cellular carcinoma (FaDu cells) with improved biodistribution profile. Eur J Pharmacol. 2021 Oct 15;909:174400. doi: 10.1016/j.ejphar.2021.174400.

34. Imran M, Iqubal MK, Imtiyaz K, Saleem S, Mittal S, Rizvi MMA, Ali J, Baboota S. Topical nanostructured lipid carrier gel of quercetin and resveratrol: Formulation, optimization, in vitro and ex vivo study for the treatment of skin cancer. Int J Pharm. 2020 Sep 25;587:119705. doi: 10.1016/j.ijpharm.2020.119705.

35. AlMulhim FM, Nair AB, Aldhubiab B, Shah H, Shah J, Mewada V, Sreeharsha N, Jacob S. Design, development, evaluation, and in vivo performance of buccal films embedded with paliperidone-loaded nanostructured lipid carriers. Pharmaceutics. 2023;15(11):2530. doi: 10.3390/pharmaceutics15112530

36. Müller RH, Mäder K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery: a review of the state of the art. Eur J Pharm Biopharm. 2000 Jul;50(1):161-77. doi:10.1016/s0939-6411(00)00087-4

37. Sodata P, Duangjit S, Sarisuta N, Kraisit P. Optimization of mucoadhesive film reinforced with functionalized nanostructured lipid carriers (NLCs) for enhanced triamcinolone acetonide delivery via buccal administration: a Box-Behnken design approach. Sci. 2025;7(1):22. doi:10.3390/sci7010022

38. Koland M, Charyulu RN, Vijayanarayana K, Prabhu P. In vitro and in vivo evaluation of chitosan buccal films of ondansetron hydrochloride. Int J Pharm Investig. 2011 Jul;1(3):164-71. doi:10.4103/2230-973X.85967

39. Lee YK, Hwang JT, Kwon DY, Surh YJ, Park OJ. Induction of apoptosis by quercetin is mediated through AMPKalpha1/ASK1/p38 pathway. Cancer Lett. 2010 Jun 28;292(2):228-36. doi: 10.1016/j.canlet.2009.12.005.

40. Farah A, Omran R. Cytotoxic activity of alkaloid extracts of different plants against breast cancer cell line. Asian J Pharm Clin Res. 2017;10(7):181-189. doi:10.22159/ajpcr.2017.v10i7.18189

Published

09-12-2025

How to Cite

PATEL, H., & LALAN, M. S. (2025). QBD-GUIDED DESIGN OF NLC-BASED BUCCAL FILMS OF A PHYTOCONSTITUENT FOR ENHANCED CHEMOPREVENTION. International Journal of Applied Pharmaceutics, 18(1). https://doi.org/10.22159/ijap.2026v18i1.56754

Issue

Section

Original Article(s)

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.