NANOCELLULOSE-ENHANCED POLY (LACTIC-CO-GLYCOLIC) ACID AS A SYNTHETIC GRAFT MATERIAL FOR IMPROVED BONE AUGMENTATION: A SYSTEMATIC REVIEW

Authors

  • YUNIA DWI RAKHMATIA Faculty of Dentistry, Universitas Padjadjaran, Jl. Sekeloa Selatan No. 1, Lebakgede, Kecamatan Coblong, Kota Bandung, Jawa Barat-40132, Indonesia. Department of Prosthodontics, Faculty of Dentistry, Universitas Padjadjaran, Jl. Sekeloa Selatan No.1, Lebakgede, Kecamatan Coblong, Kota Bandung, Jawa Barat-40132, Indonesia https://orcid.org/0000-0002-1815-6199
  • RIFA KHALISHA INDRAWAN Faculty of Dentistry, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM.21, Hegarmanah, Kecamatan Jatinangor, Kabupaten Sumedang, Jawa Barat-45363, Indonesia
  • LISDA DAMAYANTI Department of Prosthodontics, Faculty of Dentistry, Universitas Padjadjaran, Jl. Sekeloa Selatan No.1, Lebakgede, Kecamatan Coblong, Kota Bandung, Jawa Barat-40132, Indonesia
  • VITA MULYA PASSA NOVIANTI Department of Prosthodontics, Faculty of Dentistry, Universitas Padjadjaran, Jl. Sekeloa Selatan No.1, Lebakgede, Kecamatan Coblong, Kota Bandung, Jawa Barat-40132, Indonesia
  • NOVITRI HASTUTI Research Center for Biomass and Bioproducts, National Research and Innovation Agency, KST BJ Habibie Serpong, Setu, Banten-15314, Indonesia

DOI:

https://doi.org/10.22159/ijap.2025.v17s5.13

Keywords:

Nanocellulose, Poly(lactic-co-glycolic) acid/PLGA, Polymer, Synthetic graft, Bone augmentation

Abstract

A pre-implantation bone graft provides structural support when alveolar bone is insufficient. This study investigates nanocellulose and poly(lactic-co-glycolic acid) (PLGA) as grafting materials. PLGA enhances scaffold degradability through hydrolytic cleavage, with degradation kinetics determined by its lactic acid to glycolic acid (LA: GA) ratio. A 50:50 ratio degrades fastest (~8 w), while a 75:25 ratio slows degradation (~16 w). Nanocellulose, while being poorly degradable in vivo, improves mechanical strength and hydrophilicity. PLGA/CNF scaffolds showed 95% porosity with through-pores (20–100 µm), promoting cell infiltration. Mechanical strength improved with nanocellulose: compressive strength increased from 4.0 MPa (PLGA) to 6.4 MPa (PLGA/CMC), and elastic modulus reached 1,240±40 MPa in PVA/PLGA/CNC composites—a 42-fold increase. Good biocompatibility was found in all the composite samples examined, and osteogenesis was promoted. In vitro and in vivo studies confirmed that PLGA compensates for nanocellulose’s limited degradability, with complete scaffold resorption observed within 12 w for 50:50 PLGA and within three months for CPC/PLGA/CMC in PBS. These results highlight the synergistic potential of PLGA/nanocellulose composites for bone tissue engineering by combining tunable degradability, enhanced mechanics, and strong biocompatibility.

References

1. Dutta SR, Passi D, Singh P, Atri M, Mohan S, Sharma A. Risks and complications associated with dental implant failure: critical update. Natl J Maxillofac Surg. 2020;11(1):14-9. doi: 10.4103/njms.NJMS_75_16, PMID 33041571.

2. Chrcanovic BR, Albrektsson T, Wennerberg A. Bone quality and quantity and dental implant failure: a systematic review and meta-analysis. Int J Prosthodont. 2017;30(3):219–37. doi: 10.11607/ijp.5142, PMID 28319206.

3. Chavda S, Levin L. Human studies of vertical and horizontal alveolar ridge augmentation comparing different types of bone graft materials: a systematic review. J Oral Implantol. 2018;44(1):74-84. doi: 10.1563/aaid-joi-D-17-00053, PMID 29135351.

4. McKenna GJ, Gjengedal H, Harkin J, Holland N, Moore C, Srinivasan M. Effect of autogenous bone graft site on dental implant survival and donor site complications: a systematic review and meta-analysis. J Evid Based Dent Pract. 2022;22(3):101731. doi: 10.1016/j.jebdp.2022.101731, PMID 36162883.

5. Berthiaume F, Maguire TJ, Yarmush ML. Tissue engineering and regenerative medicine: history progress and challenges. Annu Rev Chem Biomol Eng. 2011;2:403-30. doi: 10.1146/annurev-chembioeng-061010-114257, PMID 22432625.

6. Titsinides S, Agrogiannis G, Karatzas T. Bone grafting materials in dentoalveolar reconstruction: a comprehensive review. Jpn Dent Sci Rev. 2019;55(1):26-32. doi: 10.1016/j.jdsr.2018.09.003, PMID 30733842.

7. Kumar P, Vinitha B, Fathima G. Bone grafts in dentistry. J Pharm Bioallied Sci. 2013;5(Suppl 1):S125-7. doi: 10.4103/0975-7406.113312, PMID 23946565.

8. Ferrari M, Cirisano F, Moran MC. Mammalian cell behavior on hydrophobic substrates: influence of surface properties. Colloids Interfaces. 2019;3(2):48. doi: 10.3390/colloids3020048.

9. Lobb DC, DeGeorge BR, Chhabra AB. Bone graft substitutes: current concepts and future expectations. J Hand Surg Am. 2019;44(6):497-505.e2. doi: 10.1016/j.jhsa.2018.10.032, PMID 30704784.

10. Baldwin P, Li DJ, Auston DA, Mir HS, Yoon RS, Koval KJ. Autograft allograft and bone graft substitutes: clinical evidence and indications for use in the setting of orthopaedic trauma surgery. J Orthop Trauma. 2019;33(4):203-13. doi: 10.1097/BOT.0000000000001420, PMID 30633080.

11. Nauth A, Lane J, Watson JT, Giannoudis P. Bone graft substitution and augmentation. J Orthop Trauma. 2015;29(Suppl 12):S34-8. doi: 10.1097/BOT.0000000000000464, PMID 26584264.

12. Guo L, Liang Z, Yang L, Du W, Yu T, Tang H. The role of natural polymers in bone tissue engineering. J Control Release. 2021;338:571-82. doi: 10.1016/j.jconrel.2021.08.055, PMID 34481026.

13. Gentile P, Chiono V, Carmagnola I, Hatton PV. An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int J Mol Sci. 2014;15(3):3640-59. doi: 10.3390/ijms15033640, PMID 24590126.

14. Zhao D, Zhu T, Li J, Cui L, Zhang Z, Zhuang X. Poly(lactic-co-glycolic acid)-based composite bone-substitute materials. Bioact Mater. 2021;6(2):346-60. doi: 10.1016/j.bioactmat.2020.08.016, PMID 32954053.

15. Kundavarapu N, Mahalingam K. In vivo assessment of polylactic co-glycolic acid nanobubbles for triggered enzalutamide delivery: optimization characterization and design of experiments-based evaluation. Asian J Pharm Clin Res. 2025;18(5):132-6. doi: 10.22159/ajpcr.2025v18i5.53879.

16. Essa D, Kondiah PP, Choonara YE, Pillay V. The design of poly(lactide-co-glycolide) nanocarriers for medical applications. Front Bioeng Biotechnol. 2020;8:48. doi: 10.3389/fbioe.2020.00048, PMID 32117928.

17. Husni P. Biodegradable polymer potential of poly-lactic-co-Glicolyc acid for cancer therapy and its clinical trial. Indones J Clin Pharm. 2018;7(1):59-68. doi: 10.15416/ijcp.2018.7.1.59.

18. Tang A, Li J, Zhao S, Liu T, Wang Q, Wang J. Biodegradable tissue engineering scaffolds based on nanocellulose/PLGA nanocomposite for NIH 3T3 cell cultivation. J Nanosci Nanotechnol. 2017;17(6):3888-95. doi: 10.1166/jnn.2017.13115.

19. Sun X, Xu C, Wu G, Ye Q, Wang C. Poly(lactic-co-glycolic acid): applications and future prospects for periodontal tissue regeneration. Polymers. 2017;9(6):189. doi: 10.3390/polym9060189, PMID 30970881.

20. Jamuna Thevi K, Saarani NN, Abdul Kadir MR, Hermawan H. Triple-layered PLGA/nanoapatite/lauric acid graded composite membrane for periodontal guided bone regeneration. Mater Sci Eng C Mater Biol Appl. 2014;43:253-63. doi: 10.1016/j.msec.2014.07.028, PMID 25175212.

21. Ortega Oller I, Padial Molina M, Galindo Moreno P, O Valle F, Jodar Reyes AB, Peula Garcia JM. Bone regeneration from PLGA micro-nanoparticles. BioMed Res Int. 2015;2015:415289. doi: 10.1155/2015/415289, PMID 26509156.

22. Kumar SK, Mothilal M. Advancements in scaffold-based drug delivery systems: a comprehensive overview and recent developments. Int J App Pharm. 2023;15(6):20-32. doi: 10.22159/ijap.2023v15i6.48645.

23. Mo Y, Guo R, Liu J, Lan Y, Zhang Y, Xue W. Preparation and properties of PLGA nanofiber membranes reinforced with cellulose nanocrystals. Colloids Surf B Biointerfaces. 2015;132:177-84. doi: 10.1016/j.colsurfb.2015.05.029, PMID 26047881.

24. Khan S, Siddique R, Huanfei D, Shereen MA, Nabi G, Bai Q. Perspective applications and associated challenges of using nanocellulose in treating bone-related diseases. Front Bioeng Biotechnol. 2021;9:616555. doi: 10.3389/fbioe.2021.616555, PMID 34026739.

25. Popa L, Ghica MV, Tudoroiu EE, Ionescu DG, Dinu Pirvu CE. Bacterial cellulose-a remarkable polymer as a source for biomaterials tailoring. Materials (Basel). 2022;15(3):1054. doi: 10.3390/ma15031054, PMID 35160997.

26. Delgado LM, Bayon Y, Pandit A, Zeugolis DI. To cross-link or not to cross-link? Cross-linking associated foreign body response of collagen-based devices. Tissue Eng Part B Rev. 2015;21(3):298-313. doi: 10.1089/ten.teb.2014.0290, PMID 25517923.

27. Wu DT, Munguia Lopez JG, Cho YW, Ma X, Song V, Zhu Z. Polymeric scaffolds for dental oral and craniofacial regenerative medicine. Molecules. 2021;26(22):7043. doi: 10.3390/molecules26227043, PMID 34834134.

28. Deng J, Song Q, Liu S, Pei W, Wang P, Zheng L. Advanced applications of cellulose-based composites in fighting bone diseases. Compos B Eng. 2022;245:110221. doi: 10.1016/j.compositesb.2022.110221.

29. Tobias T, Doran C, Nguyen H, Kumar S, Corley W, Sunasee R. In vitro immune and redox response induced by cationic cellulose-based nanomaterials. Toxicol In Vitro. 2023;91:105616. doi: 10.1016/j.tiv.2023.105616, PMID 37279824.

30. Imtiaz Y, Tuga B, Smith CW, Rabideau A, Nguyen L, Liu Y. Synthesis and cytotoxicity studies of wood-based cationic cellulose nanocrystals as potential immunomodulators. Nanomaterials (Basel). 2020;10(8):1603. doi: 10.3390/nano10081603, PMID 32824129.

31. Lin N, Dufresne A. Nanocellulose in biomedicine: current status and future prospect. Eur Polym J. 2014;59:302-25. doi: 10.1016/j.eurpolymj.2014.07.025.

32. Mandal A, Liao K, Iyer H, Lin J, Li X, Zhang S. Insights into controlling bacterial cellulose nanofiber film properties through balancing thermodynamic interactions and colloidal dynamics. Mol Syst Des Eng. 2024;9(10):1036-50. doi: 10.1039/D4ME00058G.

33. Ma L, Zhang Y, Cao J, Yao J. Preparation of unmodified cellulose nanocrystals from Phyllostachys heterocycla and their biocompatibility evaluation. BioResources. 2013;9(1):210-7. doi: 10.15376/biores.9.1.210-217.

34. Patel DK, Dutta SD, Hexiu J, Ganguly K, Lim KT. Bioactive electrospun nanocomposite scaffolds of poly(lactic acid)/cellulose nanocrystals for bone tissue engineering. Int J Biol Macromol. 2020;162:1429-41. doi: 10.1016/j.ijbiomac.2020.07.246, PMID 32755711.

35. Costa L, Carvalho AF, Fernandes AJ, Campos T, Dourado N, Costa FM. Bacterial nanocellulose as a simple and tailorable platform for controlled drug release. Int J Pharm. 2024;663:124560. doi: 10.1016/j.ijpharm.2024.124560, PMID 39127171.

36. Alsaab HO, Alharbi FD, Alhibs AS, Alanazi NB, Alshehri BY, Saleh MA. PLGA-based nanomedicine: history of advancement and development in clinical applications of multiple diseases. Pharmaceutics. 2022;14(12):2728. doi: 10.3390/pharmaceutics14122728, PMID 36559223.

37. Kurniawati N, Rakhmatia YD, Damayanti L. Penggunaan membran poly [lactic-co-glycolic] acid (PLGA) yang diperkuat oleh nanoselulosa untuk prosedur guided bone regeneration (GBR). B-Dent J Kedokt Gigi Univ Baiturrahmah. 2024;11(1):1-9. doi: 10.33854/jbd.v11i1.1542.

38. Sukul M, Nguyen TB, Min YK, Lee SY, Lee BT. Effect of local sustainable release of BMP2-VEGF from nano-cellulose loaded in sponge biphasic calcium phosphate on bone regeneration. Tissue Eng Part A. 2015;21(11-12):1822-36. doi: 10.1089/ten.tea.2014.0497, PMID 25808925.

39. Lee SH, Lim YM, Jeong SI, An SJ, Kang SS, Jeong CM. The effect of bacterial cellulose membrane compared with collagen membrane on guided bone regeneration. J Adv Prosthodont. 2015;7(6):484-95. doi: 10.4047/jap.2015.7.6.484, PMID 26816579.

40. Toledano Osorio M, Toledano M, Manzano Moreno FJ, Vallecillo C, Vallecillo Rivas M, Rodriguez Archilla A. Alveolar bone ridge augmentation using polymeric membranes: a systematic review and meta-analysis. Polymers. 2021;13(7):1172. doi: 10.3390/polym13071172, PMID 33917475.

41. Lin CY, Kuo PJ, Lin YH, Lin CY, Lin JC, Chiu HC. Fabrication of low-molecular weight hyaluronic acid-carboxymethyl cellulose hybrid to promote bone growth in guided bone regeneration surgery: an animal study. Polymers. 2022;14(15):3211. doi: 10.3390/polym14153211, PMID 35956724.

42. Meyer U, Wiesmann HP, Neunzehn J, Munster UJ, Stoelinga PJ, Cawood JI. Preprosthetic and maxillofacial surgery: biomaterials bone grafting and tissue engineering. In: Ferri J, Hunziker EB, editors. Vol. 9. Sawston: Woodhead Publishing Limited; 2011. p. 353.

43. Sheikh Z, Sima C, Glogauer M. Bone replacement materials and techniques used for achieving vertical alveolar bone augmentation. Materials. 2015;8(6):2953-93. doi: 10.3390/ma8062953.

44. Duan P, Pan Z, Cao L, Gao J, Yao H, Liu X. Restoration of osteochondral defects by implanting bilayered poly(lactide-co-glycolide) porous scaffolds in rabbit joints for 12 and 24 w. J Orthop Translat. 2019;19:68-80. doi: 10.1016/j.jot.2019.04.006.

45. Bharadwaz A, Jayasuriya AC. Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration. Mater Sci Eng C Mater Biol Appl. 2020;110:110698. doi: 10.1016/j.msec.2020.110698, PMID 32204012.

46. Huang C, Hao N, Bhagia S, Li M, Meng X, Pu Y. Porous artificial bone scaffold synthesized from a facile in situ hydroxyapatite coating and crosslinking reaction of crystalline nanocellulose. Materialia. 2018;4:237-46. doi: 10.1016/j.mtla.2018.09.008.

47. Jiang L, Li Y, Xiong C, Su S, Ding H. Preparation and properties of bamboo fiber/nano-hydroxyapatite/poly(lactic-co-glycolic) composite scaffold for bone tissue engineering. ACS Appl Mater Interfaces. 2017;9(5):4890-7. doi: 10.1021/acsami.6b15032, PMID 28084718.

48. Dai Y, Shen T, Ma L, Wang D, Gao C. Regeneration of osteochondral defects in vivo by a cell-free cylindrical poly(lactide-co-glycolide) scaffold with a radially oriented microstructure. J Tissue Eng Regen Med. 2018;12(3):e1647-61. doi: 10.1002/term.2592, PMID 29047223.

49. Wang YH, Wu JY, Kong SC, Chiang MH, Ho ML, Yeh ML. Low power laser irradiation and human adipose-derived stem cell treatments promote bone regeneration in critical-sized calvarial defects in rats. PLOS One. 2018;13(4):e0195337. doi: 10.1371/journal.pone.0195337, PMID 29621288.

50. Favi PM, Benson RS, Neilsen NR, Hammonds RL, Bates CC, Stephens CP. Cell proliferation viability and in vitro differentiation of equine mesenchymal stem cells seeded on bacterial cellulose hydrogel scaffolds. Mater Sci Eng C Mater Biol Appl. 2013;33(4):1935-44. doi: 10.1016/j.msec.2012.12.100, PMID 23498215.

51. Saber Samandari S, Saber Samandari S, Kiyazar S, Aghazadeh J, Sadeghi A. In vitro evaluation for apatite-forming ability of cellulose-based nanocomposite scaffolds for bone tissue engineering. Int J Biol Macromol. 2016;86:434-42. doi: 10.1016/j.ijbiomac.2016.01.102, PMID 26836617.

52. Iqbal H, Ali M, Zeeshan R, Mutahir Z, Iqbal F, Nawaz MA. Chitosan/hydroxyapatite (HA)/hydroxypropylmethyl cellulose (HPMC) spongy scaffolds-synthesis and evaluation as potential alveolar bone substitutes. Colloids Surf B Biointerfaces. 2017;160:553-63. doi: 10.1016/j.colsurfb.2017.09.059, PMID 29024920.

53. Qutachi O, Wright EJ, Bray G, Hamid OA, Rose FR, Shakesheff KM. Improved delivery of PLGA microparticles and microparticle-cell scaffolds in clinical needle gauges using modified viscosity formulations. Int J Pharm. 2018;546(1-2):272-8. doi: 10.1016/j.ijpharm.2018.05.025, PMID 29753905.

54. Cai P, Lu S, Yu J, Xiao L, Wang J, Liang H. Injectable nanofiber-reinforced bone cement with controlled biodegradability for minimally-invasive bone regeneration. Bioact Mater. 2022;21:267-83. doi: 10.1016/j.bioactmat.2022.08.009, PMID 36157242.

55. Rasoulianboroujeni M, Fahimipour F, Shah P, Khoshroo K, Tahriri M, Eslami H. Development of 3D-printed PLGA/TiO2 nanocomposite scaffolds for bone tissue engineering applications. Mater Sci Eng C Mater Biol Appl. 2019;96:105-13. doi: 10.1016/j.msec.2018.10.077, PMID 30606516.

56. Chen Q, Garcia RP, Munoz J, Perez De Larraya U, Garmendia N, Yao Q. Cellulose nanocrystals bioactive glass hybrid coating as bone substitutes by electrophoretic co-deposition: in situ control of mineralization of bioactive glass and enhancement of osteoblastic performance. ACS Appl Mater Interfaces. 2015;7(44):24715-25. doi: 10.1021/acsami.5b07294, PMID 26460819.

57. Takeoka Y, Hayashi M, Sugiyama N, Yoshizawa Fujita M, Aizawa M, Rikukawa M. In situ preparation of poly(L-lactic acid-co-glycolic acid)/hydroxyapatite composites as artificial bone materials. Polym J. 2015;47(2):164-70. doi: 10.1038/pj.2014.121.

58. Rescignano N, Fortunati E, Montesano S, Emiliani C, Kenny JM, Martino S. PVA bio-nanocomposites: a new take-off using cellulose nanocrystals and PLGA nanoparticles. Carbohydr Polym. 2014;99:47-58. doi: 10.1016/j.carbpol.2013.08.061, PMID 24274478.

59. Elgali I, Omar O, Dahlin C, Thomsen P. Guided bone regeneration: materials and biological mechanisms revisited. Eur J Oral Sci. 2017;125(5):315-37. doi: 10.1111/eos.12364, PMID 28833567.

60. Yang Z, Wu C, Shi H, Luo X, Sun H, Wang Q. Advances in barrier membranes for guided bone regeneration techniques. Front Bioeng Biotechnol. 2022;10:921576. doi: 10.3389/fbioe.2022.921576, PMID 35814003.

61. Yoo HS, Bae JH, Kim SE, Bae EB, Kim SY, Choi KH. The effect of bisphasic calcium phosphate block bone graft materials with polysaccharides on bone regeneration. Materials (Basel). 2017;10(1):17. doi: 10.3390/ma10010017, PMID 28772381.

62. Luo H, Cha R, Li J, Hao W, Zhang Y, Zhou F. Advances in tissue engineering of nanocellulose based scaffolds: a review. Carbohydr Polym. 2019;224:115144. doi: 10.1016/j.carbpol.2019.115144, PMID 31472870.

Published

25-12-2025

How to Cite

RAKHMATIA, Y. D., INDRAWAN, R. K., DAMAYANTI, L., NOVIANTI, V. M. P., & HASTUTI, N. (2025). NANOCELLULOSE-ENHANCED POLY (LACTIC-CO-GLYCOLIC) ACID AS A SYNTHETIC GRAFT MATERIAL FOR IMPROVED BONE AUGMENTATION: A SYSTEMATIC REVIEW. International Journal of Applied Pharmaceutics, 17(5), 6–13. https://doi.org/10.22159/ijap.2025.v17s5.13

Issue

Section

Review Article(s)

Similar Articles

<< < 106 107 108 109 110 > >> 

You may also start an advanced similarity search for this article.