EFFECTIVENESS OF CHITOSAN AND HYDROXYAPATITE FROM CRAB (PORTUNUS PELAGICUS) SHELLS AS BONE GRAFT ON BMP-2 EXPRESSION IN SOCKET PRESERVATION

Authors

  • DIAN SETIAWATI Department of Periodontics, Faculty of Dentistry, Hasanuddin University, South of Sulawesi, Indonesia
  • SRI OKTAWATI Department of Periodontics, Faculty of Dentistry, Hasanuddin University, South of Sulawesi, Indonesia
  • ASDAR GANI Department of Periodontics, Faculty of Dentistry, Hasanuddin University, South of Sulawesi, Indonesia
  • ARNI IRAWATY Department of Periodontics, Faculty of Dentistry, Hasanuddin University, South of Sulawesi, Indonesia
  • UMMI SALMIAH SARI Undergraduate Student, Faculty of Dentistry, Hasanuddin University, South of Sulawesi, Indonesia

DOI:

https://doi.org/10.22159/ijap.2025.v17s5.02

Keywords:

BMP-2, Chitosan, Hydroxyapatite, Portunus pelagicus, Bone graft

Abstract

Objective: Socket preservation involves inserting graft material into the tooth socket to prevent alveolar bone resorption and sustain bone volume. Crab shells contain high protein, chitin, and calcium carbonate, making them a potential novel material for bone grafts. This study aims to evaluate the efficacy of chitosan and hydroxyapatite (HA) derived from small crab (Portunus pelagicus) shell waste on Bone Morphogenetic Protein (BMP)-2 expression during socket preservation procedures in experimental animals.

Methods: Chitosan derived from crab shells is produced through demineralization, deproteinization, and deacetylation processes. HA is derived from diminutive crab shell through a reaction with calcium and phosphate precursors. A total of 36 male cavia cobaya guinea pigs underwent mandibular incisor extraction, divided into four groups: the chitosan powder from blue crab shells group, the chitosan gel and HA from blue crab shells group, the positive control given commercially available HA bone graft, and the negative control group given a placebo gel. On days 7, 14, and 21, sacrifices were performed to collect the mandibular jaw tissue of the cavia cobaya guinea pigs, and immunohistochemical examinations were conducted to determine BMP-2 expression. Data analysis was conducted using the Shapiro-Wilk test, ANOVA, and post hoc LSD test.

Results: On days 7, 14, and 21, there was an increase in BMP-2 expression.

Conclusion: Chitosan and hydroxyapatite derived from the shells of Portunus pelagicus have been demonstrated to effectively enhance BMP-2 expression.

References

1. Sohn HS, Oh JK. Review of bone graft and bone substitutes with an emphasis on fracture surgeries. Biomater Res. 2019;23:9. doi: 10.1186/s40824-019-0157-y, PMID 30915231.

2. Fernandez De Grado G, Keller L, Idoux Gillet Y, Wagner Q, Musset AM, Benkirane Jessel N. Bone substitutes: a review of their characteristics, clinical use and perspectives for large bone defects management. J Tissue Eng. 2018;9:2041731418776819. doi: 10.1177/2041731418776819, PMID 29899969.

3. Sheikh Z, Hamdan N, Ikeda Y, Grynpas M, Ganss B, Glogauer M. Natural graft tissues and synthetic biomaterials for periodontal and alveolar bone reconstructive applications: a review. Biomater Res. 2017;21:9. doi: 10.1186/s40824-017-0095-5, PMID 28593053.

4. Ardhiyanto HB. The role of hydroxyapatite as bone graft material in simulating type l collagen density in bone healing. Stomatognatic Journal of Dentistry. 2015;9(1):16-8.

5. Zhao R, Yang R, Cooper PR, Khurshid Z, Shavandi A, Ratnayake J. Bone grafts and substitutes in dentistry: a review of current trends and developments. Molecules. 2021;26(10):3007. doi: 10.3390/molecules26103007, PMID 34070157.

6. Hou Y, Shavandi A, Carne A, Bekhit AA, Ng TB, Cheung RC. Marine shells: potential opportunities for extraction of functional and health-promoting materials. Crit Rev Environ Sci Technol. 2016;46(11-12):1047-116. doi: 10.1080/10643389.2016.1202669.

7. Alhussary BN, Taqa A, Taqa A. Preparation and characterization of natural nano hydroxyapatite from eggshell and seashell and its effect on bone healing. J Appl Vet Sci. 2020;5(2):25-32. doi: 10.21608/javs.2020.85567.

8. Muhara I, Fadli A, Akbar F. Sintesis hidroksiapatit dari kulit kerang darah dengan metode hidrotermal suhu rendah. Jom Fteknik. 2015;2(1):1–5.

9. Affandi A, Amri A, Zultiniar Z. Sintesis hidroksiapatit dari cangkang kerang darah (Anadara granosa) dengan proses hidrotermal variasi rasio mol CA/P dan suhu sintesis. Jom Fteknik. 2015;2(1):1–8.

10. Malau ND, Azzahra SF. Pengaruh waktu kalsinasi terhadap karakteristik kristal CaO dari limbah cangkang kepiting. Edu Mat Sains: Jurnal Pendidikan Matematika Dan Sains. 2020;5(1):83–92. doi: 10.33541/edumatsains.v5i1.1777.

11. Zaki TM. Analisis sumberdaya dan strategi pengembangan sektor kelautan dan perikanan Kabupaten deli serdang. Publika. 2018;5(2):25. doi: 10.31289/publika.v5i2.1434.

12. Morris JP, Backeljau T, Chapelle G. Shells from aquaculture: a valuable biomaterial not a nuisance waste product. Rev Aquacult. 2019;11(1):42-57. doi: 10.1111/raq.12225.

13. White MM, Chejlava M, Fried B, Sherma J. The concentration of calcium carbonate in shells of freshwater snails. Am Malacol Bull. 2007;22(1):139-42. doi: 10.4003/0740-2783-22.1.139.

14. Agrawal K, Singh G, Puri D, Prakash S. Synthesis and characterization of hydroxyapatite powder by sol-gel method for biomedical application. J Miner Mater Charact Eng. 2011;10(8):727-34. doi: 10.4236/jmmce.2011.108057.

15. Shavandi A, Bekhit AE, Sun Z, Ali MA. Bio-scaffolds produced from irradiated squid pen and crab chitosan with hydroxyapatite/β-tricalcium phosphate for bone-tissue engineering. Int J Biol Macromol. 2016;93(B):1446-56. doi: 10.1016/j.ijbiomac.2016.04.046, PMID 27126171.

16. Fee R. Socket preservation. Br Dent J. 2017;222(8):579‑82. doi: 10.1038/sj.bdj.2017.355.

17. Khoswanto C. Optimum concentration Anredera cordifolia (Ten.) steenis gel in increasing the expression BMP-2 and the number of osteoblasts post tooth extraction in Wistar rats. J Int Dent Med Res. 2019;12(3):959-63.

18. Ezoddini Ardakani F, Navabazam A, Fatehi F, Danesh Ardekani M, Khadem S, Rouhi G. Histologic evaluation of chitosan as an accelerator of bone regeneration in microdrilled rat tibias. Dent Res J (Isfahan). 2012;9(6):694-9. PMID 23559943.

19. Gani A, Yulianty R, Supiaty S, Rusdy M, Dwipa Asri G, Eka Satya D. Effectiveness of combination of chitosan gel and hydroxyapatite from crabs shells (Portunus pelagicus) waste as bonegraft on periodontal network regeneration through IL-1 and BMP-2 analysis. Int J Biomater. 2022;2022:1817236. doi: 10.1155/2022/1817236, PMID 35356491.

20. Matsunaga T, Yanagiguchi K, Yamada S, Ohara N, Ikeda T, Hayashi Y. Chitosan monomer promotes tissue regeneration on dental pulp wounds. J Biomed Mater Res A. 2006;76(4):711-20. doi: 10.1002/jbm.a.30588, PMID 16315192.

21. Wu M, Wu S, Chen W, Li YP. The roles and regulatory mechanisms of TGF-β and BMP signaling in bone and cartilage development, homeostasis and disease. Cell Res. 2024;34(2):101-23. doi: 10.1038/s41422-023-00918-9, PMID 38267638.

22. Kamadjaja MJ, Tumali BA, Laksono H, Hendrijantini N, Ariani ML, Natasia. Effect of socket preservation using crab shell-based hydroxyapatite in wistar rats. Recent Adv Biol Med. 2020;6(2):1-9. doi: 10.18639/RABM.2020.1116232.

23. Suchetha A. Alveolar bone in health. IP‑Int J Periodontol Implantol. 2017;2(4):112–6. doi: 10.18231/2457-0087.2017.0002.

24. Levengood SL, Zhang M. Chitosan-based scaffolds for bone tissue engineering. J Mater Chem B. 2014;2(21):3161-84. doi: 10.1039/C4TB00027G, PMID 24999429.

25. Sularsih. The effect of chitosan gel viscosity on its use in the wound healing process. J Dent Mater. 2013;2(1):60-7.

26. Puspita BS, Sularsih S, Damaiyanti DW. The difference in the effect of high and low molecular weight chitosan administration on the number of blood vessels in the tooth‑extraction wound‑healing process. Denta J Kedokteran Gigi. 2015;9(2):209–14.

Published

25-12-2025

How to Cite

SETIAWATI, D., OKTAWATI, S., GANI, A., IRAWATY, A., & SARI, U. S. (2025). EFFECTIVENESS OF CHITOSAN AND HYDROXYAPATITE FROM CRAB (PORTUNUS PELAGICUS) SHELLS AS BONE GRAFT ON BMP-2 EXPRESSION IN SOCKET PRESERVATION. International Journal of Applied Pharmaceutics, 17(5), 19–24. https://doi.org/10.22159/ijap.2025.v17s5.02

Issue

Section

Original Article(s)

Most read articles by the same author(s)

Similar Articles

<< < 7 8 9 10 11 > >> 

You may also start an advanced similarity search for this article.