EVALUATION OF COMPRESSIVE AND TENSILE STRENGTH OF HYDROXYAPATITE NANOPARTICLES FROM SPIRAL BABYLON SHELLS (BABYLONIA SPIRATA) AS ALVEOLAR BONE GRAFT MATERIAL CANDIDATES
DOI:
https://doi.org/10.22159/ijap.2025.v17s5.11Keywords:
Compressive strength, Tensile strength, Spiral Babylon, HydroxyapatiteAbstract
Objective: This research is a pilot study that aims to determine the compressive and tensile strength values of nanoparticles hydroxyapatite (nHAp) from Spiral Babylon shells (Babylonia spirata).
Methods: The materials used are nHAp made from Spiral Babylon shells using the sol-gel method. The process of hydroxyapatite casting was carried out by mixing hydroxyapatite powder with a binding agent in a ratio of 70% (nHAp) to 30% (Epoxy resin). The specimens were then tested with the Universal Testing Machine to obtain the values of the compressive and tensile strength. Each test was performed in triplicate (n = 3).
Results: The values mean of compressive strength obtained was 45.7±3.86 MPa and tensile strength was 6.69±0.53 MPa.
Conclusion: Spiral Babylon shells show potential as a candidate material for alveolar bone grafts.
References
1. Novak MJ. Classification of diseases and conditions affecting the periodontium. In: Newman MG, Takei HH, Carranza FA, editors. Carranza’s Clinical Periodontology. 9th ed. Philadelphia: W. B. Saunders Company; 2002. p. 64-73.
2. Elangovan S, Do JH, Takei HH, Carranza FA, Newman MG. Periodontal treatment plan. In: Newman and carranza’s clinical periodontology and implantology. Amsterdam: Elsevier; 2024.
3. Pandit N, Pandit I. Autogenous bone grafts in periodontal practice: a literature review. J Int Clin Dent Res Organ. 2016;8(1):27. doi: 10.4103/2231-0754.176247.
4. Tsai HC, Li YC, Young TH, Chen MH. Novel microinjector for carrying bone substitutes for bone regeneration in periodontal diseases. J Formos Med Assoc. 2016 Jan 1;115(1):45-50. doi: 10.1016/j.jfma.2014.10.009, PMID 26071794.
5. Kataria S, Chandrashekar K, Mishra R, Tripathi V. Autogenous bone graft for management of periodontal defects. J Int Clin Dent Res Organ. 2016;8(1):70. doi: 10.4103/2231-0754.176261.
6. Bayani M, Torabi S, Shahnaz A, Pourali M. Main properties of nanocrystalline hydroxyapatite as a bone graft material in treatment of periodontal defects. A review of literature. Biotechnol Biotechnol Equip. 2017;31(2):215-20. doi: 10.1080/13102818.2017.1281760.
7. Kaushal S, Kapoor A, Singh P, Kochhar G, Khuller N, Basavaraj P. Evaluation of OSSIFI® as alloplastic bone graft material in treatment of periodontal infrabony defects. J Clin Diagn Res. 2014;8(10):ZC61-5. doi: 10.7860/JCDR/2014/8501.5043, PMID 25478450.
8. Abere DV, Ojo SA, Oyatogun GM, Paredes Epinosa MB, Niluxsshun MC, Hakami A. Mechanical and morphological characterization of nano-hydroxyapatite (nHA) for bone regeneration: a mini review. Biomed Eng Adv. 2022 Dec;4:100056. doi: 10.1016/j.bea.2022.100056.
9. Agrawal K, Singh G, Puri D, Prakash S. Synthesis and characterization of hydroxyapatite powder by sol-gel method for biomedical application. J Miner Mater Charact Eng. 2011;10(8):727-34. doi: 10.4236/jmmce.2011.108057.
10. Sasmita D. Sintesis hidroksiapatit dari cangkang keong emas [Pomaceae canaliculata lamrack] melalui metode hidrotermal. Jurnal Sainstek. 2011;3(2):129-35.
11. Nastiti AD, Widyastuti W, Laihad FM. Bioviabilitas hidroksiapatit ekstrak cangkang kerang darah (Anadara granosa) terhadap sel punca mesenkimal sebagai bahan graft tulang alveol. DENTA Jurnal Kedokteran Gigi. 2015;9(2):122-8. doi: 10.30649/denta.v9i2.8.
12. Agustiyanti RD, Azis Y, Helwani Z. Sintesis hidroksiapaptit dari precipitated calcium carbonate (PCC) cangkang telur ayam ras melalui proses presipitasi. J Online Mahasiswa Fak Tekn. 2018;5(1):45-52.
13. Faizah R. Keong Macan (Babylonia spirata L) sebagai primadona baru bagi nelayan di Indonesia. BAWAL Widya Riset Perikanan Tangkap. 2007;1(4):139‑43. doi: 10.15578/bawal.1.4.2007.139‑143.
14. Vishwanath Ganachari S, Yaradoddi J, Banapurmath N. Rapid synthesis, characterization and studies of hydroxyapatite nanoparticles. Adv Mater Sci Res. 2016;1(1):9-13.
15. Rasool I, Singh A. In vitro studies of biomaterial device “hydroxyapatite” prepared from different routes for biomedical applications. Asian J Pharm Clin Res. 2018 Oct 1;11(10):496-7. doi: 10.22159/ajpcr.2018.v11i10.27452.
16. Vijayalakshmi U, Rajeswari S. Preparation and characterization of microcrystalline hydroxyapatite using the sol-gel method. Trends Biomater Artif Organs. 2006;19(2):57-62.
17. El Hadad AA, Peon E, Garcia Galvan FR, Barranco V, Parra J, Jimenez Morales A. Biocompatibility and corrosion protection behaviour of hydroxyapatite sol-gel-derived coatings on Ti6Al4V alloy. Materials (Basel). 2017;10(2):94. doi: 10.3390/ma10020094, PMID 28772455.
18. Rivera Munoz EM. 4 hydroxyapatite-based materials: synthesis and characterization. In: Biomedical engineering. Frontiers and Challenges; 2011. p. 79-95. doi: 10.5772/19123.
19. Kartikasari N, Yuliati A, Kriswandini IL. Compressive strength and porosity tests on bovine hydroxyapatite-gelatin-chitosan scaffolds. Dent J (Majalah Kedokteran Gigi). 2016 Sep 30;49(3):153. doi: 10.20473/j.djmkg.v49.i3.p153-157.
20. Tao Y, Pan J, Yan S, Tang B, Zhu L. Tensile strength optimization and characterization of chitosan/TiO2 hybrid film. Mater Sci Eng B. 2007 Mar 15;138(1):84-9. doi: 10.1016/j.mseb.2006.12.013.
21. Rani KC, Riesta P, Hendradi E. Preparation and evaluation of ciprofloxacin implants using bovine hydroxyapatite-chitosan composite and glutaraldehyde for osteomyelitis. Int J Pharm Pharm Sci. 2016;8(1):45-51.
22. Griffin KS, Davis KM, McKinley TO, Anglen JO, Chu TM, Boerckel JD. Evolution of bone grafting: bone grafts and tissue engineering strategies for vascularized bone regeneration. Clin Rev Bone Miner Metab. 2015;13(4):232-44. doi: 10.1007/s12018-015-9194-9.
23. Miron RJ. Optimized bone grafting. Periodontol 2000. 2024 Feb 1;94(1):143-60. doi: 10.1111/prd.12517, PMID 37610202.
24. Kumar P, Vinitha B, Fathima G. Bone grafts in dentistry. J Pharm Bioallied Sci. 2013 Jun;5(Suppl 1):S125-7. doi: 10.4103/0975-7406.113312, PMID 23946565.
25. Pooyan Sajjadi S. Sol-gel process and its application in nanotechnology. J Polym Eng Technol. 2005;13:38-41.
26. Mondal S, Dey A, Pal U. Low temperature wet-chemical synthesis of spherical hydroxyapatite nanoparticles and their in situ cytotoxicity study. Adv Nano Res. 2016 Dec 25;4(4):295-307. doi: 10.12989/anr.2016.4.4.295.
27. Malinin TI, Carpenter EM, Temple HT. Particulate bone allograft incorporation in regeneration of osseous defects; importance of particle sizes. Open Orthop J. 2007 Dec 26;1(1):19-24. doi: 10.2174/1874325000701010019, PMID 19471600.
28. Funda G, Taschieri S, Bruno GA, Grecchi E, Paolo S, Girolamo D. Nanotechnology scaffolds for alveolar bone regeneration. Materials (Basel). 2020;13(1):201. doi: 10.3390/ma13010201, PMID 31947750.
29. Lemos EM, Carvalho SM, Patricio PS, Donnici CL, Pereira MM. Comparison of the effect of sol-gel and coprecipitation routes on the properties and behavior of nanocomposite chitosan-bioactive glass membranes for bone tissue engineering. J Nanomater. 2015;2015(1):1-9. doi: 10.1155/2015/150394.
30. Hannink G, Bioresorbability AJJ. Porosity and mechanical strength of bone substitutes: what is optimal for bone regeneration. Int J Care Inj. 2011;42(Suppl 2):s22-5. doi: 10.1016/j.injury.2011.06.008.
31. Tripathi G, Basu B. A porous hydroxyapatite scaffold for bone tissue engineering: physico-mechanical and biological evaluations. Ceram Int. 2012;38(1):341-9. doi: 10.1016/j.ceramint.2011.07.012.
32. Hannora AE, Ataya S. Structure and compression strength of hydroxyapatite/titania nanocomposites formed by high-energy ball milling. J Alloys Compd. 2016;658:222-33. doi: 10.1016/j.jallcom.2015.10.240.
33. Sulistyawati E, Siregar RF. Karakteristik hidroksiapatit porous dari prekursor cangkang keong sawah dan bahan porogen pati sukun. Eksergi. 2019 Nov 18;16(2):59. doi: 10.31315/e.v16i2.3082.
34. Sopyan I, Singh R, Hamdi M. Synthesis of nanosized hydroxyapatite powder using sol-gel technique and its conversion to dense and porous bodies. Indian J Chem. 2008;47A(11):1626-31.
35. Oktar FN, Agathopoulos S, Ozyegin LS, Gunduz O, Demirkol N, Bozkurt Y. Mechanical properties of bovine hydroxyapatite (BHA) composites doped with SiO2, MgO, Al2O3, and ZrO2. J Mater Sci Mater Med. 2007 Nov;18(11):2137-43. doi: 10.1007/s10856-007-3200-9, PMID 17619958.
36. Liu W, Cheong N, He Z, Zhang T. Application of hydroxyapatite composites in bone tissue engineering: a review. J Funct Biomater. 2025;16(4):127. doi: 10.3390/jfb16040127, PMID 40278235.
37. Sunarso S, Suryadi A, Indrani DJ, Pangesty AI. Compressive strength of newly developed nonsintered hydroxyapatite blocks for bone graft applications. Eur J Dent. 2023;18(3):815-9. doi: 10.1055/s-0043-1774327, PMID 37995731.
38. Chapter DJR 1. Introduction to tensile testing. In: Tensile Testing (2nd ed.). ASM International; 2004. p. 1-12.
39. Fu Q, Saiz E, Rahaman MN, Tomsia AP. Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives. Mater Sci Eng C Mater Biol Appl. 2011;31(7):1245-56. doi: 10.1016/j.msec.2011.04.022, PMID 21912447.
40. Wirtz DC, Schiffers N, Pandorf T, Radermacher K, Weichert D, Forst R. Critical evaluation of known bone material properties to realize anisotropic FE-simulation of the proximal femur. J Biomech. 2000;33(10):1325-30. doi: 10.1016/S0021-9290(00)00069-5, PMID 10899344.
Published
How to Cite
Issue
Section

This work is licensed under a Creative Commons Attribution 4.0 International License.