A REVIEW ON TARGETED POLYMERIC NANOPARTICLES: CLASSIFICATION, PREPARATION TECHNOLOGY, BIOSYNTHESIS, CHARACTERIZATION AND APPLICATION IN DRUG DELIVERY SYSTEM

Authors

  • ABHISHEK KUMAR Ashoka Institute of Technology and Management (Pharmacy), Paharia- Sarnath, Varanasi-221007, U. P., India https://orcid.org/0000-0002-0129-5336
  • BRIJESH SINGH Ashoka Institute of Technology and Management (Pharmacy), Paharia- Sarnath, Varanasi-221007, U. P., India https://orcid.org/0000-0003-0927-4131
  • PREET KAUR Ashoka Institute of Technology and Management (Pharmacy), Paharia- Sarnath, Varanasi-221007, U. P., India

DOI:

https://doi.org/10.22159/ijcpr.2025v17i4.6098

Keywords:

Nanoparticles, Polymeric shell, Dermal drug delivery, Nanotechnology and nanomedicine

Abstract

The intricacy of certain sicknesses, as well as the innate harmfulness of specific medications, has prompted a rising interest in the turn of events and improvement of medication conveyance frameworks. Polymeric nanoparticles stand apart as a vital tool to further develop drug bioavailability or specific delivery at the site of action. The adaptability of polymers makes them possibly great for satisfying the particular drug-delivery system. Polymeric nanoparticles comprise of an inward part (center) in which the therapeutic substance is contained and encompassed by a polymeric shell. Polymeric nanoparticles have shown extraordinary potential for designated conveyance of medications for the treatment of diseases. Nano medicine gives another medical care worldwide and is equipped for reviving existing clinical items. Polymeric nanoparticles stand apart as a vital tool to further develop drug bioavailability or explicit conveyance at the site of activity. In this review, we examine the most ordinarily involved techniques which are used for the creation and production of polymeric nanoparticles was given also there is the brief illustration about the revision of the use of polymeric nanoparticles for the dermal drug delivery, cosmetics, gene delivery using nanoparticles was carried out, The choice of polymer and the ability to modify drug release from polymeric nanoparticles have made them ideal candidates for nanoparticles. There is a short discussion about the application of nanotechnology used in the field of medicine and the antimicrobial technique used in the application nanotechnology.

Downloads

Download data is not yet available.

References

1. Ahmad MZ, Mohammed AA, Algahtani MS, Mishra A, Ahmad J. Nanoscale topical pharmacotherapy in the management of psoriasis: contemporary research and scope. J Funct Biomate. 2023;14(1):1-19. doi: 10.3390/jfb14010019.

2. Kondapuram P, Kumar SS. A review of merely polymeric nanoparticles in recent drug delivery system. Asian J Pharm Clin Res. 2022;15(4):4-12. doi: 10.22159/ajpcr.2022.v15i4.43239.

3. Khan I, Saeed K, Khan I. Nanoparticles: properties, applications and toxicities. Arab J Chem. 2019;12(7):908-31. doi: 10.1016/j.arabjc.2017.05.011.

4. Nalla A. Novel herbal drug delivery system an overview. WJPPS. 2017;6(8):369-95. doi: 10.20959/wjpps20178-9712.

5. Sandhiya V, Ubaidulla U. A review on herbal drug loaded into pharmaceutical carrier techniques and its evaluation process. Future J Pharm Sci. 2020;6(1):51. doi: 10.1186/s43094-020-00050-0.

6. Salavati Niasari M, Davar F, Mir N. Synthesis and characterization of metallic copper nanoparticles via thermal decomposition. Polyhedron. 2008;27(17):3514-8. doi: 10.1016/j.poly.2008.08.020.

7. Tai CY, Tai CT, Chang MH, Liu HS. Synthesis of magnesium hydroxide and oxide nanoparticles using a spinning disk reactor. Ind Eng Chem Res. 2007;46(17):5536-41. doi: 10.1021/ie060869b.

8. Tiwari DK, Behari J, Sen P. Application of nanoparticles in waste water treatment. World Applied Sciences Journal. 2008;3(3):3417-33.

9. Ealias AM, Saravanakumar P. A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conf S Mater Sci Eng. 2017;263(3):32019. doi: 10.1088/1757-899X/263/3/032019.

10. Pal SL, Jana U, Manna PK, Mohanta GP, Manavalan R. Nanoparticle: an overview of preparation and characterization. J Appl Pharm Sci. 2011;1(6):228-34.

11. Nagavarma BV, Yadav HKS, Ayuz A, Vasudha LS, Shivakumar HG. Different techniques for preparation of polymeric nanoparticles a review. Asian J Pharm Clin Res. 2012;5(3):1-8.

12. Mullaicharam AR. Nanoparticles in drug delivery system. Int J Nutr Pharmacol Neurol Dis. 2011;1(2):103-21. doi: 10.4103/2231-0738.84194.

13. Allouche J. Synthesis of organic and bioorganic nanoparticles: an overview of the preparation methods. Springer Verlag London; 2013. p. 27-74.

14. Aleksandra Z, Carreiro F, Oliveira AM, Andreia N, Barbara P, Nagasamy DV. Polymeric nanoparticles: production, characterization toxicol ecotoxicol. Mol. 2020 Aug 15;25(16):3731. doi: 10.3390/molecules25163731.

15. Tamizhrasi S, Shukla A, Shivkumar T, Rathi V, Rathi JC. Formulation and evaluation of lamivudine-loaded polymethacrylic acid nanoparticles. Int J PharmTech Res. 2009;1(3):411-5.

16. Mu L, Feng SS. PLGA/TPGS nanoparticles for controlled release of paclitaxel: effects of the emulsifier and drug loading ratio. Pharm Res. 2003;20(11):1864-72. doi: 10.1023/b:pham.0000003387.15428.42, PMID 14661934.

17. Puglisi G, Fresta M, Giammona G, Ventura CA. Influence of the preparation conditions on poly(ethylcyanoacrylate) nanocapsule formation. International Journal of Pharmaceutics. 1995;125(2):283-7. doi: 10.1016/0378-5173(95)00142-6.

18. Calvo P, Remunan Lopez C, Vila Jato JL, Alonso MJ. Novel hydrophilic chitosan polyethylene oxide nanoparticles as protein carriers. J Appl Polym Sci. 1997;63(1):125-32. doi: 10.1002/(SICI)1097-4628(19970103)63:1<125::AID-APP13>3.0.CO;2-4.

19. Jung J, Perrut M. Particle design using supercritical fluids: literature and patent survey. J Supercrit Fluids. 2001;20(3):179-219. doi: 10.1016/S0896-8446(01)00064-X.

20. Singh P, Kim YJ, Zhang D, Yang DC. Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol. 2016;34(7):588-99. doi: 10.1016/j.tibtech.2016.02.006, PMID 26944794.

21. Klaus T, Joerger R, Olsson E, Granqvist CG. Silver-based crystalline nanoparticles microbially fabricated. Proc Natl Acad Sci USA. 1999;96(24):13611-4. doi: 10.1073/pnas.96.24.13611, PMID 10570120.

22. Konishi Y, Ohno K, Saitoh N, Nomura T, Nagamine S, Hishida H. Bioreductive deposition of platinum nanoparticles on the bacterium shewanella algae. J Biotechnol. 2007;128(3):648-53. doi: 10.1016/j.jbiotec.2006.11.014, PMID 17182148.

23. Willner I, Baron R, Willner B. Growing metal nanoparticles by enzymes. Advanced Materials. 2006;18(9):1109-20. doi: 10.1002/adma.200501865.

24. Vigneshwaran N, Ashtaputre NM, Varadarajan PV, Nachane RP, Paralikar KM, Balasubramanya RH. Biological synthesis of silver nanoparticles using the fungus aspergillus flavus. Mater Lett. 2007;61(6):1413-8. doi: 10.1016/j.matlet.2006.07.042.

25. Shankar SS, Rai A, Ankamwar B, Singh A, Ahmad A, Sastry M. Biological synthesis of triangular gold nanoprisms. Nat Mater. 2004;3(7):482-8. doi: 10.1038/nmat1152, PMID 15208703.

26. Ahmad N, Sharma S, Singh VN, Shamsi SF, Fatma A, Mehta BR. Biosynthesis of silver nanoparticles from Desmodium triflorum: a novel approach towards weed utilization. Biotechnol Res Int. 2011;2011:1-8. doi: 10.4061/2011/454090.

27. Armendariz V, Gardea Torresdey JL, Jose Yacaman M, Gonzalez J, Herrera I, Parsons JG. Proceedings of the conference on application of waste remediation technologies to agricultural contamination of water resources Kansas City, MO, USA; 2002.

28. Kim BY, Rutka JT, Chan WC. Nanomedicine. N Engl J Med. 2010;363(25):2434-43. doi: 10.1056/NEJMra0912273, PMID 21158659.

29. Kyriacou SV, Brownlow WJ, Xu XH. Using nanoparticle optics assay for direct observation of the function of antimicrobial agents in single live bacterial cells. Biochemistry. 2004;43(1):140-7. doi: 10.1021/bi0351110, PMID 14705939.

30. Hulkoti NI, Taranath TC. Biosynthesis of nanoparticles using microbes a review. Colloids and Surfaces B: Biointerfaces. 2014 Sep 1;121:474-83. doi: 10.1016/j.colsurfb.2014.05.027.

31. Mann S. Biomineralization principles and concepts in bioinorganic materials chemistry. Oxford, UK: Oxford University Press; 2001. doi: 10.1093/oso/9780198508823.001.0001.

32. Narayanan KB, Sakthivel N. Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interface Sci. 2010;156(1-2):1-13. doi: 10.1016/j.cis.2010.02.001, PMID 20181326.

33. Vanlalveni C, Ralte V, Zohmingliana H, Das S, Anal JM, Lallianrawna S. A review of microbes mediated biosynthesis of silver nanoparticles and their enhanced antimicrobial activities. Heliyon. 2024;10(11):e32333. doi: 10.1016/j.heliyon.2024.e32333, PMID 38947433.

34. Sastry M, Ahmad A, Khan I, Kumar R. Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr Sci. 2003;85(2):162-70.

35. Mcbride AA, Price DN, Lamoureux LR, Elmaoued AA, Vargas JM, Adolphi NL. Preparation and characterization of novel magnetic nano-in-microparticles for site-specific pulmonary drug delivery. Mol Pharm. 2013;10(10):3574-81. doi: 10.1021/mp3007264, PMID 23964796.

36. Marsalek R. Particle size and zeta potential of ZnO. APCBEE Procedia. 2014;9:13-7. doi: 10.1016/j.apcbee.2014.01.003.

37. Sharma V, Rao lJM. An overview on chemical composition, bioactivity and processing of leaves of cinnamomum tamala. Crit Rev Food Sci Nutr. 2014:54(4)433-48. doi: 10.1080/10408398.2011.587615.

38. Hodoroaba VD, Rades S, Unger WE. Inspection of morphology and elemental imaging of single nanoparticles by high-v resolution SEM/EDX in transmission mode. Surface & Interface Analysis. 2014;46(10-11):945-8. doi: 10.1002/sia.5426.

39. Yano F, Hiraoka A, Itoga T, Kojima H, Kanehori K, Mitsui Y. Influence of ion-implantation on native oxidation of Si in a clean room atmosphere. Appl Surf Sci. 1996;100-101:138-42. doi: 10.1016/0169-4332(96)00274-7.

40. Aejaz A, Azmail K, Sanaullah S, Mohsin A. Formulation and in vitro evaluation of aceclofenac solid dispersion incorporated gels. Int J Appl Sci. 2010;2(1):7-12.

41. Souza SD. A review of in vitro drug release test methods for nanosized dosage forms. Adv Pharm. 2014;2:1-12. doi: 10.1155/2014/304757.

42. PB Abeena, R Praveen Raj, PA Daisy. A review on cyclodextrinsnanosponges. Int J Pharm Sci Rev Res. 2020;60(1):132-7.

43. Almeida AJ, Souto E. Solid lipid nanoparticles as a drug delivery system for peptides and proteins. Adv Drug Deliv Rev. 2007;59(6):478-90. doi: 10.1016/j.addr.2007.04.007, PMID 17543416.

44. Banga AK. Pharmaceutical application of nanoparticles in drug delivery system Drug Delivery Today. Pharm Technol. 2002;61:150-4.

45. Wang W. Instability stabilization and formulation of liquid protein pharmaceuticals. Int J Pharm. 1999;185(2):129-88. doi: 10.1016/s0378-5173(99)00152-0, PMID 10460913.

46. Chandrababu D, Hiren B, Patel L. Pharmaceutical application of nanoparticles in drug delivery system. Asian J Pharm Life Sci. 2012;56:456-98.

47. Zhang Q, Shen Z, Nagai T. Prolonged hypoglycemic effect of insulin loaded polybutylcyanoacrylate nanoparticles after pulmonary administration to normal rats. Int J Pharm. 2001;218(1-2):75-80. doi: 10.1016/s0378-5173(01)00614-7, PMID 11337151.

48. Papakostas D, Rancan F, Sterry W, Blume Peytavi U, Vogt A. Nanoparticles in dermatology. Arch Dermatol Res. 2011;303(8):533-50. doi: 10.1007/s00403-011-1163-7, PMID 21837474.

49. Nelson AM, Gilliland KL, Cong Z, Thiboutot DM. 13-cis retinoic acid induces apoptosis and cell cycle arrest in human SEB-1 sebocytes. J Invest Dermatol. 2006;126(10):2178-89. doi: 10.1038/sj.jid.5700289, PMID 16575387.

50. Messenger AG, Rundegren J. Minoxidil: mechanisms of action on hair growth. J Dermatol. 2004;150(2):186-94. doi: 10.1111/j.1365-2133.2004.05785.x.

51. Takahashi T, Kamimura A. Cyclosporin a promotes hair epithelial cell proliferation and modulates protein kinase C expression and translocation in hair epithelial cells. J Invest Dermatol. 2001;117(3):605-11. doi: 10.1046/j.0022-202x.2001.01452.x, PMID 11564166.

52. Parixit P, Rikisha B. Cytokines and signal transduction pathways mediated by anthralin in alopecia areata affected dundee experimental balding rats. J Investig Dermatol Symp Proc. 2011;2:40-55.

53. Phillipos T. Safety and risk associated with nanoparticles a review. J Miner Mater Char Eng. 2010;9(5):455-9. doi: 10.4236/jmmce.2010.95031.

54. Cincinnati OH. Approaches to safe nanotechnology; an information exchange. CDC; 2006.

55. Cho K, Wang X, Nie S, Chen ZG, Shin DM. Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res. 2008;14(5):1310-6. doi: 10.1158/1078-0432.CCR-07-1441, PMID 18316549.

56. Kaur IP, Bhandari R, Bhandari S, Kakkar V. Potential of solid lipid nanoparticles in brain targeting. J Control Release. 2008;127(2):97-109. doi: 10.1016/j.jconrel.2007.12.018, PMID 18313785.

57. Imam SS. Nanoparticles: the future of drug delivery. Int J Curr Pharm Sci. 2023;15(6):8-15. doi: 10.22159/ijcpr.2023v15i6.3076.

58. Vijayashankar S, U Doss. Analysis of salivary components to evaluate the pathogenesis of autism in children. Asian J Pharm Clin Res. 2014;7(4):205-11.

59. Renganathan S, Fatma S, PK. Green synthesis of copper nanoparticle from Passiflora foetida leaf extract and its antibacterial activity. Asian J Pharm Clin Res. 2017;10(4):79-83. doi: 10.22159/ajpcr.2017.v10i4.15744.

60. Yadav NK, Mazumder R, Rani A, Kumar A. Current perspectives on using nanoparticles for diabetes management. Int J App Pharm. 2024;16(5):38-45. doi: 10.22159/ijap.2024v16i5.51084.

61. Phalak SD, Bodke V, Yadav R, Pandav S, Ranaware M. A systematic review on nano drug delivery system: solid lipid nanoparticles (SLN). Int J Curr Pharm Sci. 2024;16(1):10-20. doi: 10.22159/ijcpr.2024v16i1.4020.

Published

15-07-2025

How to Cite

KUMAR, ABHISHEK, et al. “A REVIEW ON TARGETED POLYMERIC NANOPARTICLES: CLASSIFICATION, PREPARATION TECHNOLOGY, BIOSYNTHESIS, CHARACTERIZATION AND APPLICATION IN DRUG DELIVERY SYSTEM”. International Journal of Current Pharmaceutical Research, vol. 17, no. 4, July 2025, pp. 1-9, doi:10.22159/ijcpr.2025v17i4.6098.

Issue

Section

Review Article(s)