GELATIN-BASED DRUG DELIVERY NANOSYSTEM FOR ONCOLOGY
DOI:
https://doi.org/10.22159/ijcpr.2025v17i3.55044Keywords:
Biomaterial, Gelatin, Nanoparticles, Cancer, OncologyAbstract
Drug delivery nanosystems (DDnS) have seen significant advancements recently. Gelatin, a highly promising biomaterial derived from natural sources, is utilized in anticancer DDnS, enhancing the efficacy of anticancer medications while minimizing side effects. The hydrophilic and amphoteric properties of gelatin, along with its sol-gel transition, enable it to meet various demands in anticancer drug delivery nanosystems. Regarding the latter, the focus is on the application of gelatin in fields of science and technology related to the unique spatial/molecular structure of this high-molecular compound, such as protein-based nanosystems, immobilized matrix systems that organize an immobilized substance at the nanoscale, matrices for the creation of pharmaceutical/dosage forms.
Downloads
References
Jiang X, DU Z, Zhang X, Zaman F, Song Z, Guan Y. Gelatin based anticancer drug delivery nanosystems: a mini review. Front Bioeng Biotechnol. 2023;11:1158749. doi: 10.3389/fbioe.2023.1158749, PMID 37025360.
Chavda VP, Patel AB, Mistry KJ, Suthar SF, WU ZX, Chen ZS. Nano drug delivery systems entrapping natural bioactive compounds for cancer: recent progress and future challenges. Front Oncol. 2022;12:867655. doi: 10.3389/fonc.2022.867655, PMID 35425710.
Majidzadeh H, Araj Khodaei M, Ghaffari M, Torbati M, Ezzati Nazhad Dolatabadi J, Hamblin MR. Nano-based delivery systems for berberine: a modern anti-cancer herbal medicine. Colloids Surf B Biointerfaces. 2020;194:111188. doi: 10.1016/j.colsurfb.2020.111188, PMID 32540763.
Meghani NM, Amin HH, Park C, Park JB, Cui JH, Cao QR. Design and evaluation of clickable gelatine oleic nanoparticles using fattigation platform for cancer therapy. Int J Pharm. 2018;545(1-2):101-12. doi: 10.1016/j.ijpharm.2018.04.047, PMID 29698822.
Ajith S, Almomani F, Elhissi A, Husseini GA. Nanoparticle-based materials in anticancer drug delivery: current and future prospects. Heliyon. 2023;9(11):e21227. doi: 10.1016/j.heliyon.2023.e21227, PMID 37954330.
Gullapalli RP, Mazzitelli CL. Gelatin and non-gelatin capsule dosage forms. J Pharm Sci. 2017;106(6):1453-65. doi: 10.1016/j.xphs.2017.02.006, PMID 28209365.
Hamarat Sanlıer S, Yasa M, Cihnioglu AO, Abdulhayoglu M, Yılmaz H, Ak G. Development of gemcitabine adsorbed magnetic gelatin nanoparticles for targeted drug delivery in lung cancer. Artif Cells Nanomed Biotechnol. 2016;44(3):943-9. doi: 10.3109/21691401.2014.1001493, PMID 25615875.
Han S, LI M, Liu X, Gao H, WU Y. Construction of amphiphilic copolymer nanoparticles based on gelatin as drug carriers for doxorubicin delivery. Colloids Surf B Biointerfaces. 2013 Feb 1;102:833-41. doi: 10.1016/j.colsurfb.2012.09.010, PMID 23107962.
Cascone MG, Lazzeri L, Carmignani C, Zhu Z. Gelatin nanoparticles produced by a simple W/O emulsion as delivery system for methotrexate. J Mater Sci Mater Med. 2002;13(5):523-6. doi: 10.1023/a:1014791327253, PMID 15348607.
Allen TM, Cullis PR. Drug delivery systems: entering the mainstream. Science. 2004;303(5665):1818-22. doi: 10.1126/science.1095833, PMID 15031496.
Alipal J, Mohd PU’AD NA, Lee TC, Nayan NH, Sahari N, Basri H. A review of gelatin: Properties sources process applications and commercialisation. Mater Today Proc. 2021;42:240-50. doi: 10.1016/j.matpr.2020.12.922.
Zou Z, HE D, HE X, Wang K, Yang X, Qing Z. Natural gelatin capped mesoporous silica nanoparticles for intracellular acid triggered drug delivery. Langmuir. 2013;29(41):12804-10. doi: 10.1021/la4022646, PMID 24073830.
Slemming Adamsen P, Song J, Dong M, Besenbacher F, Chen M. In situ cross-linked PNIPAM/gelatin nanofibers for thermo-responsive drug release. Macromol Mater Eng. 2015;300(12):1226-31. doi: 10.1002/mame.201500160.
Esposito E, Cortesi R, Nastruzzi C. Gelatin microspheres: influence of preparation parameters and thermal treatment on chemico physical and biopharmaceutical properties. Biomaterials. 1996;17(20):2009-20. doi: 10.1016/0142-9612(95)00325-8, PMID 8894096.
Bozzuto G, Molinari A. Liposomes as nanomedical devices. Int J Nanomedicine. 2015 Feb 2;10:975-99. doi: 10.2147/IJN.S68861, PMID 25678787.
Bangham AD, Standish MM, Watkins JC. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol. 1965;13(1):238-52. doi: 10.1016/S0022-2836(65)80093-6, PMID 5859039.
Carugo D, Bottaro E, Owen J, Stride E, Nastruzzi C. Liposome production by microfluidics: potential and limiting factors. Sci Rep. 2016;6:25876. doi: 10.1038/srep25876, PMID 27194474.
Nagalingam A. Drug delivery aspects of herbal medicines. In: Japanese kampo medicines for the treatment of common diseases: focus on inflammation. Amsterdam: Elsevier; 2017. p. 143-64. doi: 10.1016/B978-0-12-809398-6.00015-9.
Prabhu RH, Patravale VB, Joshi MD. Polymeric nanoparticles for targeted treatment in oncology: current insights. Int J Nanomedicine. 2015 Feb 2;10:1001-18. doi: 10.2147/IJN.S56932, PMID 25678788.
Rai S, Pandey V, Rai G. Transfersomes as versatile and flexible nano vesicular carriers in skin cancer therapy: the state of the art. Nano Rev Exp. 2017;8(1):1325708. doi: 10.1080/20022727.2017.1325708, PMID 30410704.
Sarwa KK, Mazumder B, Rudrapal M, Verma VK. Potential of capsaicin loaded transfersomes in arthritic rats. Drug Deliv. 2015;22(5):638-46. doi: 10.3109/10717544.2013.871601, PMID 24471764.
Pando D, Matos M, Gutierrez G, Pazos C. Formulation of resveratrol entrapped niosomes for topical use. Colloids Surf B Biointerfaces. 2015;128:398-404. doi: 10.1016/j.colsurfb.2015.02.037, PMID 25766923.
Goyal G, Garg T, Malik B, Chauhan G, Rath G, Goyal AK. Development and characterization of niosomal gel for topical delivery of benzoyl peroxide. Drug Deliv. 2015;22(8):1027-42. doi: 10.3109/10717544.2013.855277, PMID 24251352.
Rameshk M, Sharififar F, Mehrabani M, Pardakhty A, Farsinejad A, Mehrabani M. Proliferation and in vitro wound healing effects of the microniosomes containing Narcissus tazetta L. bulb extract on primary human fibroblasts (HDFs). Daru. 2018;26(1):31-42. doi: 10.1007/s40199-018-0211-7, PMID 30209758.
Choi JH, Cho SH, Yun JJ, YU YB, Cho CW. Ethosomes and transfersomes for topical delivery of ginsenoside rhl from red ginseng: characterization and in vitro evaluation. J Nanosci Nanotechnol. 2015;15(8):5660-2. doi: 10.1166/jnn.2015.10462, PMID 26369134.
Limsuwan T, Boonme P, Khongkow P, Amnuaikit T. Ethosomes of phenylethyl resorcinol as vesicular delivery system for skin lightening applications. BioMed Res Int. 2017;2017:8310979. doi: 10.1155/2017/8310979, PMID 28804723.
Madaan K, Kumar S, Poonia N, Lather V, Pandita D. Dendrimers in drug delivery and targeting: drug dendrimer interactions and toxicity issues. J Pharm Bioallied Sci. 2014;6(3):139-50. doi: 10.4103/0975-7406.130965, PMID 25035633.
Estanqueiro M, Amaral MH, Conceicao J, Sousa Lobo JM. Nanotechnological carriers for cancer chemotherapy: the state of the art. Colloids Surf B Biointerfaces. 2015;126:631-48. doi: 10.1016/j.colsurfb.2014.12.041, PMID 25591851.
Chittasupho C, Anuchapreeda S, Sarisuta N. CXCR4 targeted dendrimer for anti-cancer drug delivery and breast cancer cell migration inhibition. Eur J Pharm Biopharm. 2017 Oct;119:310-21. doi: 10.1016/j.ejpb.2017.07.003, PMID 28694161.
Luong D, Kesharwani P, Deshmukh R, Mohd Amin MC, Gupta U, Greish K. PEGylated PAMAM dendrimers: enhancing efficacy and mitigating toxicity for effective anticancer drug and gene delivery. Acta Biomater. 2016 Oct 1;43:14-29. doi: 10.1016/j.actbio.2016.07.015, PMID 27422195.
Xiang J, WU B, Zhou Z, HU S, Piao Y, Zhou Q. Synthesis and evaluation of a paclitaxel binding polymeric micelle for efficient breast cancer therapy. Sci China Life Sci. 2018;61(4):436-47. doi: 10.1007/s11427-017-9274-9, PMID 29572777.
Perinelli DR, Cespi M, Lorusso N, Palmieri GF, Bonacucina G, Blasi P. Surfactant self-assembling and critical micelle concentration: one approach fits all? Langmuir. 2020;36(21):5745-53. doi: 10.1021/acs.langmuir.0c00420, PMID 32370512.
Ghezzi M, Pescina S, Padula C, Santi P, Del Favero E, Cantu L. Polymeric micelles in drug delivery: an insight of the techniques for their characterization and assessment in biorelevant conditions. J Control Release. 2021 Apr 10;332:312-36. doi: 10.1016/j.jconrel.2021.02.031, PMID 33652113.
Gkionis L, Aojula H, Harris LK, Tirella A. Microfluidic assisted fabrication of phosphatidylcholine based liposomes for controlled drug delivery of chemotherapeutics. Int J Pharm. 2021 Apr;604:120711. doi: 10.1016/j.ijpharm.2021.120711, PMID 34015381.
Hormozi N, Esmaeili A. Microfluidic assisted fabrication of phosphatidylcholine based liposomes for controlled drug delivery of chemotherapeutics. Colloids Surfaces B Biointerfaces. 2019 Jun;182:110368. doi: 10.1016/j.colsurfb.2019.110368.
Abdelbary AA, Aboughaly MH. Design and optimization of topical methotrexate loaded niosomes for enhanced management of psoriasis: application of box behnken design in vitro evaluation and in vivo skin deposition study. Int J Pharm. 2015;485(1-2):235-43. doi: 10.1016/j.ijpharm.2015.03.020, PMID 25773359.
Qumbar M, Ameeduzzafar ISS, Imam SS, Ali J, Ahmad J. Formulation and optimization of lacidipine loaded niosomal gel for transdermal delivery: in vitro characterization and in vivo activity. Biomed Pharmacother. 2017;93:255-66. doi: 10.1016/j.biopha.2017.06.043, PMID 28738502.
Zhang W, Yang Y, LV T, Fan Z, XU Y, Yin J. Sucrose esters improve the colloidal stability of nanoethosomal suspensions of epigallocatechin gallate for enhancing the effectiveness against UVB-induced skin damage. J Biomed Mater Res B Appl Biomater. 2017;105(8):2416-25. doi: 10.1002/jbm.b.33785, PMID 27618624.
Maleki B, Reiser O, Esmaeilnezhad E, Choi HJ. SO3H-dendrimer functionalized magnetic nanoparticles (Fe3O4@D NH (CH2)4SO3H): synthesis characterization and its application as a novel and heterogeneous catalyst for the one-pot synthesis of polyfunctionalized pyrans and polyhydroquinolines. Polyhedron. 2019;162:129-41. doi: 10.1016/j.poly.2019.01.055.
Barve A, Jain A, Liu H, Zhao Z, Cheng K. Enzyme responsive polymeric micelles of cabazitaxel for prostate cancer targeted therapy. Acta Biomater. 2020;113:501-11. doi: 10.1016/j.actbio.2020.06.019, PMID 32562805.
Golestani P. Lipid-based nanoparticles as a promising treatment for the skin cancer. Heliyon Heliyon. 2024;10(9):e29898. doi: 10.1016/j.heliyon.2024.e29898, PMID 38698969.
Islam K. Potential of nanoparticles as a topical drug delivery system for skin cancer: a review; 2022.
Derakhshankhah H, Jahanban Esfahlan R, Vandghanooni S, Akbari Nakhjavani S, Massoumi B, Haghshenas B. A bio-inspired gelatine-based pH and thermal-sensitive magnetic hydrogel for in vitro chemo/hyperthermia treatment of breast cancer cells. J Appl Polym Sci. 2021;138(24):1-13. doi: 10.1002/app.50578.
Gulati GK, Chen T, Hinds BJ. Programmable carbon nanotube membrane-based transdermal nicotine delivery with microdialysis validation assay. Nanomedicine. 2017;13(1):1-9. doi: 10.1016/j.nano.2016.06.017, PMID 27438911.
Hortobagyi GN. Treatment of breast cancer. N Engl J Med. 1998;339(14):974-84. doi: 10.1056/NEJM199810013391407.
Rawal S, Patel M. Bio-nanocarriers for lung cancer management: befriending the barriers. Nano-Micro Lett. 2021;13(1):142. doi: 10.1007/s40820-021-00630-6, PMID 34138386.
Abdelrady H, Hathout RM, Osman R, Saleem I, Mortada ND. Exploiting gelatin nanocarriers in the pulmonary delivery of methotrexate for lung cancer therapy. Eur J Pharm Sci. 2019;133:115-26. doi: 10.1016/j.ejps.2019.03.016, PMID 30905615.
Yang C, Merlin D. Lipid-based drug delivery nanoplatforms for colorectal cancer therapy. Nanomaterials (Basel). 2020;10(7):1424. doi: 10.3390/nano10071424, PMID 32708193.
Published
How to Cite
Issue
Section
Copyright (c) 2025 VAISHNAVI S. JAISWAL, MRUNAL KOLHE, DHIRAJ KHAMBAYAT, PURVA PAPRIKAR

This work is licensed under a Creative Commons Attribution 4.0 International License.