SELF MICROEMULSIFYING DRUG DELIVERY SYSTEMS (SMEDDS): KEY APPROACH FOR IMPROVING ORAL DELIVERY OF POORLY WATER SOLUBLE DRUGS

Authors

  • DINAKARAN M. Department of Pharmaceutics, C. L. Baid Metha College of Pharmacy, Rajiv Gandhi Salai, Thoraipakkam, Chennai-600097, India
  • GRACE RATHNAM Department of Pharmaceutics, C. L. Baid Metha College of Pharmacy, Rajiv Gandhi Salai, Thoraipakkam, Chennai-600097, India https://orcid.org/0009-0005-3266-7816

DOI:

https://doi.org/10.22159/ijcpr.2025v17i4.7034

Keywords:

Self-micro emulsifying drug delivery systems (SMEDDS), Oral bioavailability, Lipid phase, Surfactant, Co-surfactant

Abstract

Nearly 50% of newly developed drug candidates that progress to the formulation stage exhibit poor water solubility. Oral administration remains the most common route for the long-term treatment of many diseases. However, in numerous cases, the orally delivered drugs encounter obstacles due to their high lipophilicity. These poorly soluble in water face challenges such as reduced oral bioavailability, significant variability between and within subjects, and a lack of dose proportionality. The primary goal of this review is to compile and present detailed information on the design and assessment of self microemulsifying drug delivery systems (SMEDDS). This compilation aims to assist in improving the bioavailability of poorly water-soluble drugs administered orally. SMEDDS are isotropic mixtures of oils, surfactants, and co-surfactants. Upon mild agitation and dilution with water-such as gastrointestinal fluids-they form clear oil-in-water microemulsions. SMEDDS has become a key strategy for enhancing the bioavailability of poorly water-soluble drugs. Despite its benefits, SMEDDS faces several challenges, such as drug precipitation in the body, handling difficulties, limited uptake through the lymphatic system, the absence of reliable in vitro predictive tests, and the risk of oxidation of unsaturated fatty acids. These drawbacks can hinder its broader application. Converting SMEDDS into solid forms can also resolve issues related to the instability and handling of liquid formulations. This review thoroughly examines the challenges of SMEDDS and explores practical strategies to address them.

Downloads

Download data is not yet available.

References

1. Anand S, Gupta R, Prajapathi SK. Self-microemulsifying drug delivery system. Asian J Pharm Clin Res. 2016;9(2):33-8.

2. Kyat Anwar AU, Jadav KR. Self-microemulsifying drug delivery system. J Pharm Res. 2010;3(1):75-83.

3. Mandawgade SD, Sharma S, Pathak S, Patravale VB. Development of SMEDDS using natural lipophile: application to β-artemether delivery. Int J Pharm. 2008;362(1-2):179-83. doi: 10.1016/j.ijpharm.2008.06.021, PMID 18652886.

4. Kang BK, Lee JS, Chon SK, Jeong SY, Yuk SH, Khang G. Development of self-microemulsifying drug delivery systems (SMEDDS) for oral bioavailability enhancement of simvastatin in beagle dogs. Int J Pharm. 2004;274(1-2):65-73. doi: 10.1016/j.ijpharm.2003.12.028, PMID 15072783.

5. Rahman MA, Hussain A, Hussain MS, Mirza MA, Iqbal Z. Role of excipients in successful development of self-emulsifying/microemulsifying drug delivery system (SEDDS/SMEDDS). Drug Dev Ind Pharm. 2013;39(1):1-19. doi: 10.3109/03639045.2012.660949, PMID 22372916.

6. Maurya SD, Arya RK, Rajpal G, Dhakar RC. Self-microemulsifying drug delivery systems (SMEDDS): a review on physicochemical and biopharmaceutical aspects. J Drug Delivery Ther. 2017;7(3):55-65. doi: 10.22270/jddt.v7i3.1453.

7. Khan AW, Kotta S, Ansari SH, Sharma RK, Ali J. Potentials and challenges in self-nanoemulsifying drug delivery systems. Expert Opin Drug Deliv. 2012;9(10):1305-17. doi: 10.1517/17425247.2012.719870, PMID 22954323.

8. Laddha P, Suthar V, Butani S. Development and optimization of self-microemulsifying drug delivery of domperidone. Braz J Pharm Sci. 2014;50(1):91-100. doi: 10.1590/S1984-82502011000100009.

9. Eccleston GM. Emulsions and microemulsions. In: Swarbrick J, editor. Encyclopaedia of Pharmaceutical Technology. New York: Informa Healthcare; 2007. p. 1548-65.

10. Mahmoud EA, Bendas ER, Mohamed MI. Preparation and evaluation of self-nanoemulsifying tablets of carvedilol. AAPS PharmSciTech. 2009;10(1):183-92. doi: 10.1208/s12249-009-9192-7, PMID 19238556.

11. Gao P. Design and development of self-emulsifying lipid formulations for improving oral bioavailability of poorly water-soluble and lipophilic drugs. In: Williams RO, Watts AB, Miller DA, editors. Formulating poorly water-soluble drugs. New York: Springer New York; 2012. p. 243-66. doi: 10.1007/978-1-4614-1144-4_7.

12. Nazzal S, Khan MA. Controlled release of a self-emulsifying formulation from a tablet dosage form: stability assessment and optimization of some processing parameters. Int J Pharm. 2006;315(1-2):110-21. doi: 10.1016/j.ijpharm.2006.02.019, PMID 16563673.

13. Gao P, Morozowich W. Development of supersaturatable self-emulsifying drug delivery system formulations for improving the oral absorption of poorly soluble drugs. Expert Opin Drug Deliv. 2006;3(1):97-110. doi: 10.1517/17425247.3.1.97, PMID 16370943.

14. Huang Y, Tian R, Hu W, Jia Y, Zhang J, Jiang H. A novel plug-controlled colon-specific pulsatile capsule with tablet of curcumin loaded SMEDDS. Carbohydr Polym. 2013;92(2):2218-23. doi: 10.1016/j.carbpol.2012.11.105, PMID 23399280.

15. Woo JS, Song YK, Hong JY, Lim SJ, Choi HK. Reduced food effect and enhanced bioavailability of a self-microemulsifying formulation of itraconazole in healthy volunteers. Eur J Pharm Sci. 2008;33(2):59-65. doi: 10.1016/j.ejps.2007.11.001.

16. Taha E, Ghorab D, Zaghloul AA. Bioavailability assessment of vitamin a self-nanoemulsified drug delivery systems in rats: a comparative study. Med Princ Pract. 2007;16(5):355-9. doi: 10.1159/000104808.

17. Sander C, Holm P. Porous magnesium aluminometasilicate tablets as carrier of a cyclosporine self-emulsifying formulation. AAPS PharmSciTech. 2009;10(4):1388-95. doi: 10.1208/s12249-009-9340-0, PMID 19936938.

18. Khin Chi MP, Gupta A, Gupta MK. Self-emulsifying drug delivery system: a review. Asian J Biochem Pharm Res. 2011;1(2):359-67.

19. Bajaj H, Bisht S, Yadav M, Singh V. Bioavailability enhancement: a review. Int J Pharm Bio Sci. 2011;2(2):209-16.

20. Shukla JB, Koli AR, Ranch KM, Parikh RK. Self-microemulsifying drug delivery system. Int J Pharm Sci. 2010;1(2):13-33.

21. Shinde VJ, Orpe AA, Munde PV, Nimbalkar HY. Self-microemulsifying drug delivery system (SMEDDS): a novel approach. Am J Pharm Tech Res. 2020;10(1):251-65.

22. Manyam N. Recent advances in self-emulsifying drug delivery system. Int J Rev Life Sci. 2011;1(4):206-14.

23. Ingle LM. New approaches for development and characterization of SMEDDS. Int J Pharm Pharm Sci Res. 2013;3(1):7-14.

24. Agrawal S, Giri TK, Tripathi DK, Ajaz A, Alexander A. A review on novel therapeutic strategies for the enhancement of solubility for hydrophobic drugs through lipid and surfactant-based self-microemulsifying drug delivery system: a novel approach. Am J Drug Discov Dev. 2012;2(4):143-83. doi: 10.3923/ajdd.2012.143.183.

25. Patel D, Sawant KK. Self-microemulsifying drug delivery system: formulation development and biopharmaceutical evaluation of lipophilic drugs. Curr Drug Deliv. 2009;6(4):419-24. doi: 10.2174/156720109789000519, PMID 19534704.

26. Porter CJ, Trevaskis NL, Charman WN. Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nat Rev Drug Discov. 2007;6(3):231-48. doi: 10.1038/nrd2197, PMID 17330072.

27. Chen ZQ, Liu Y, Zhao JH, Wang L, Feng NP. Improved oral bioavailability of poorly water-soluble indirubin by a supersaturatable self-microemulsifying drug delivery system. Int J Nanomedicine. 2012;7:1115-25. doi: 10.2147/IJN.S28761, PMID 22403491.

28. Bowtle W. Materials process and manufacturing considerations for lipid-based hard capsule formats. In: Hauss DJ, editor. Oral lipid-based formulations enhancing the bioavailability of poorly water-soluble drugs. New York: Informa Healthcare; 2007;170:79-106.

29. Tang B, Cheng G, Gu JC, Xu CH. Development of solid self-emulsifying drug delivery systems: preparation techniques and dosage forms. Drug Discov Today. 2008;13(13-14):606-12. doi: 10.1016/j.drudis.2008.04.006, PMID 18598917.

30. Caliph SM, Charman WN, Porter CJ. Effect of short medium and long chain fatty acid-based vehicles on the absolute oral bioavailability and intestinal lymphatic transport of halofantrine and assessment of mass balance in lymph cannulated and non-cannulated rats. J Pharm Sci. 2000;89(8):1073-84. doi: 10.1002/1520-6017(200008)89:8<1073::aid-jps12>3.0.co;2-v, PMID 10906731.

31. Trevaskis NL, Charman WN, Porter CJ. Lipid-based delivery systems and intestinal lymphatic drug transport: a mechanistic update. Adv Drug Deliv Rev. 2008;60(6):702-16. doi: 10.1016/j.addr.2007.09.007, PMID 18155316.

32. Ku MS, Li W, Dulin W, Donahue F, Cade D, Benameur H. Performance qualification of a new hypromellose capsule: part I. Comparative evaluation of physical, mechanical and processability quality attributes of Vcaps Plus quali-V and gelatin capsules. Int J Pharm. 2010 Feb 15;386(1-2):30-41. doi: 10.1016/j.ijpharm.2009.10.050.

33. Tang B, Cheng G, Gu JC, Xu CH. Development of solid self-emulsifying drug delivery systems: preparation techniques and dosage forms. Drug Discov Today. 2008;13(13-14):606-12. doi: 10.1016/j.drudis.2008.04.006, PMID 18598917.

34. Zhang P, Liu Y, Feng N, Xu J. Preparation and evaluation of self-microemulsifying drug delivery system of oridonin. Int J Pharm. 2008;355(1-2):269-76. doi: 10.1016/j.ijpharm.2007.12.026, PMID 18242895.

35. Dahan A, Hoffman A. Rationalizing the selection of oral lipid-based drug delivery systems by an in vitro dynamic lipolysis model for improved oral bioavailability of poorly water-soluble drugs. J Control Release. 2008;129(1):1-10. doi: 10.1016/j.jconrel.2008.03.021, PMID 18499294.

36. Patil P, Patil V, Paradkar A. Formulation of a self-emulsifying system for oral delivery of simvastatin: in vitro and in vivo evaluation. Acta Pharm. 2007;57(1):111-22. doi: 10.2478/v10007-007-0009-5, PMID 19839411.

37. Tang JL, Sun J, He ZG. Self-emulsifying drug delivery systems: strategy for improving oral delivery of poorly soluble drugs. Curr Drug Ther. 2007;2(1):85-93. doi: 10.2174/157488507779422400.

38. Wasylaschuk WR, Harmon PA, Wagner G, Harman AB, Templeton AC, Xu H. Evaluation of hydroperoxides in common pharmaceutical excipients. J Pharm Sci. 2007;96(1):106-16. doi: 10.1002/jps.20726, PMID 16917844.

39. Sato K. Crystallization behaviour of fats and lipids a review. Chem Eng Sci. 2001;56(7):2255-65. doi: 10.1016/S0009-2509(00)00458-9.

40. Kovacic B, Vrecer F, Planinsek O. Spherical crystallization of drugs. Acta Pharm. 2012;62(1):1-14. doi: 10.2478/v10007-012-0010-5, PMID 22472445.

41. Mu H, Holm R, Mullertz A. Lipid-based formulations for oral administration of poorly water-soluble drugs. Int J Pharm. 2013;453(1):215-24. doi: 10.1016/j.ijpharm.2013.03.054, PMID 23578826.

42. Christensen KL, Pedersen GP, Kristensen HG. Technical aspects of spray drying and applications for the pharmaceutical industry. Pharm Dev Technol. 2001;6(3):277-87. doi: 10.1081/PDT-100107289.

43. Janga KY, Jukanti R, Vemula SK, Sunkavalli S, Velpula A, Bandari S. Solid self-emulsifying drug delivery systems: formulation characterization and biopharmaceutical performance. Curr Drug Deliv. 2012;9(3):222-32.

44. Tang B, Cheng G, Gu JC, Xu CH. Development of solid self-emulsifying drug delivery systems: preparation techniques and dosage forms. Drug Discov Today. 2008;13(13-14):606-12. doi: 10.1016/j.drudis.2008.04.006, PMID 18598917.

45. Yi T, Wan J, Xu H, Yang X. A new solid self-microemulsifying formulation prepared by spray drying to improve the oral bioavailability of poorly water-soluble drugs. J Pharm Sci. 2008;97(2):646-59.

46. Ito Y, Kusawake T, Ishida M, Tawa R, Shibata N, Takada K. Oral solid gentamicin preparation using emulsifier and adsorbent. J Control Release. 2005;105(1-2):23-31. doi: 10.1016/j.jconrel.2005.03.017, PMID 15908031.

47. Kallakunta VR, Bandari S, Jukanti R, Veerareddy PR. Oral self-emulsifying powder of lercanidipine hydrochloride: formulation and evaluation. Powder Technol. 2012 May;221:375-82. doi: 10.1016/j.powtec.2012.01.032.

48. Ito Y, Kusawake T, Ishida M, Tawa R, Shibata N, Takada K. Oral solid gentamicin preparation using emulsifier and adsorbent. J Control Release. 2005;105(1-2):23-31. doi: 10.1016/j.jconrel.2005.03.017, PMID 15908031.

49. Venkatesan N, Yoshimitsu J, Ito Y, Shibata N, Takada K. Liquid-filled nanoparticles as a drug delivery tool for protein therapeutics. Biomaterials. 2005;26(34):7154-63. doi: 10.1016/j.biomaterials.2005.05.012, PMID 15967493.

50. Verreck G, Brewster ME. Melt extrusion-based dosage forms, excipients and processing conditions for pharmaceutical formulations. Bol Tech Gattefosse. 2004;97:85-95.

51. Clarke AP, Booth SW. Formulation variables on pellets containing self-emulsifying systems. Pharm Technol Eur. 2005;17(6):29-33.

Published

15-07-2025

How to Cite

M., DINAKARAN, and GRACE RATHNAM. “SELF MICROEMULSIFYING DRUG DELIVERY SYSTEMS (SMEDDS): KEY APPROACH FOR IMPROVING ORAL DELIVERY OF POORLY WATER SOLUBLE DRUGS”. International Journal of Current Pharmaceutical Research, vol. 17, no. 4, July 2025, pp. 26-31, doi:10.22159/ijcpr.2025v17i4.7034.

Issue

Section

Review Article(s)