THE POTENTIAL OF 3D PRINTING IN DRUG DELIVERY AND TISSUE ENGINEERING

Authors

  • ANIKET S. INGLE Shastry Institute of Pharmacy, Dbatu, Jalgaon, Maharashtra, India
  • KRANTI S. PATIL Shastry Institute of Pharmacy, Dbatu, Jalgaon, Maharashtra, India
  • PURVA M. PAPRIKAR Shastry Institute of Pharmacy, Dbatu, Jalgaon, Maharashtra, India

DOI:

https://doi.org/10.22159/ijcpr.2025v17i5.7038

Keywords:

3 Dimensional printing, Technics of 3D printing, Fabricating material, Tissue engineering, Drug delivery

Abstract

The pyramid of additive manufacturing, the jewel of 3-dimensional (3D) printing emerges. Over the past ten years, it has been anticipated that three-dimensional bioprinting technology will revolutionize the pharmaceutical sector. It is rapidly developing and has applications in many fields, including as the aircraft, defence, automotive, architectural, film, music, forensic, dental, audiology, prosthetics, surgery, cuisine, and fashion industries. This amazing manufacturing technique has grown in importance for pharmaceutical applications in recent years. Computer software will create a computer-aided drug (CAD) model, which will then be fed into bioprinters. The printers will identify and create the model scaffold based on material inputs. The printing process is accelerated by methods such as stereolithography, binder deposition, inkjet-based, fused deposition modelling, material extrusion, material jetting, selective laser sintering, selective laser melting, and bioprinting. Rapid prototyping, flexible design, print-on-demand, lightweight and robust components, quick and economical, and environmentally friendly are some of the unique benefits. The conceptualization of 3D printing is briefly described in this review, followed by the many techniques used. A brief explanation of the fabrication materials used in the pharmaceutical industry was given. The laser beam is directed toward the different pharmaceutical and medical uses.

Downloads

Download data is not yet available.

References

1. Pavan Kalyan BG, Kumar L. 3D printing: applications in tissue engineering medical devices and drug delivery. AAPS PharmSciTech. 2022;23(4):92. doi: 10.1208/s12249-022-02242-8, PMID 35301602.

2. Wang C, Huang W, Zhou Y, He L, He Z, Chen Z. 3D printing of bone tissue engineering scaffolds. Bioact Mater. 2020;5(1):82-91. doi: 10.1016/j.bioactmat.2020.01.004, PMID 31956737.

3. Serhan M. Total iron measurement in human serum with a smartphone. AIChE Annu Meet Conf Proc. 2019 Nov;8:2800309. doi: 10.1109/JTEHM.2020.3005308.

4. Zhu W, Ma X, Gou M, Mei D, Zhang K, Chen S. 3D printing of functional biomaterials for tissue engineering. Curr Opin Biotechnol. 2016;40:103-12. doi: 10.1016/j.copbio.2016.03.014, PMID 27043763.

5. Zaszczynska A, Moczulska Heljak M, Gradys A, Sajkiewicz P. Advances in 3D printing for tissue engineering. Materials (Basel). 2021;14(12):3149. doi: 10.3390/ma14123149, PMID 34201163.

6. Jain A, Bansal KK, Tiwari A, Rosling A, Rosenholm JM. Role of polymers in 3D printing technology for drug delivery an overview. Curr Pharm Des. 2018;24(42):4979-90. doi: 10.2174/1381612825666181226160040, PMID 30585543.

7. Afsana, Jain V, Haider N, Jain K. 3D printing in personalized drug delivery. Curr Pharm Des. 2018;24(42):5062-71. doi: 10.2174/1381612825666190215122208, PMID 30767736.

8. Badnjevic A, Skrbic R, Gurbeta Pokvic L, editors. CMBEBIH 2019. Cham: Springer International Publishing; 2020. doi: 10.1007/978-3-030-17971-7.

9. Jammalamadaka U, Tappa K. Recent advances in biomaterials for 3D printing and tissue engineering. J Funct Biomater. 2018;9(1):22. doi: 10.3390/jfb9010022, PMID 29494503.

10. Bae H, Chu H, Edalat F, Cha JM, Sant S, Kashyap A. Development of functional biomaterials with micro and nanoscale technologies for tissue engineering and drug delivery applications. J Tissue Eng Regen Med. 2014;8(1):1-14. doi: 10.1002/term.1494, PMID 22711442.

11. Richards DJ, Tan Y, Jia J, Yao H, Mei Y. 3D printing for tissue engineering. Isr J Chem. 2013;53(9-10):805-14. doi: 10.1002/ijch.201300086, PMID 26869728.

12. Dogan E. HHS Public Access. 2020. p. 1-28. doi: 10.1016/j.apmt.2020.100752.3D.

13. Wang S, Chen X, Han X, Hong X, Li X, Zhang H. A review of 3D printing technology in pharmaceutics: technology and applications now and future. Pharmaceutics. 2023;15(2):416. doi: 10.3390/pharmaceutics15020416, PMID 36839738.

14. Aldawood FK, Parupelli SK, Andar A, Desai S. 3D printing of biodegradable polymeric microneedles for transdermal drug delivery applications. Pharmaceutics. 2024;16(2):237. doi: 10.3390/pharmaceutics16020237, PMID 38399291.

15. Jamroz W, Szafraniec J, Kurek M, Jachowicz R. 3D printing in pharmaceutical and medical applications recent achievements and challenges. Pharm Res. 2018;35(9):176. doi: 10.1007/s11095-018-2454-x, PMID 29998405.

16. Park BJ, Choi HJ, Moon SJ, Kim SJ, Bajracharya R, Min JY. Pharmaceutical applications of 3D printing technology: current understanding and future perspectives. J Pharm Investig. 2018 Oct 29;49:575-85. doi: 10.1007/s40005-018-00414-y.

17. Kumar AV. A review paper on 3D-printing and various processes used in the 3D-printing. IJSREM. 2022;6(5):953-8. doi: 10.55041/IJSREM13278.

18. Bozkurt Y, Karayel E. 3D printing technology; methods biomedical applications future opportunities and trends. J Mater Res Technol. 2021;14:1430-50. doi: 10.1016/j.jmrt.2021.07.050.

19. Nadagouda MN, Rastogi V, Ginn M. A review on 3D printing techniques for medical applications. Curr Opin Chem Eng. 2020 Jun;28:152-7. doi: 10.1016/j.coche.2020.05.007.

20. Garechana G, Rio Belver R, Bildosola I, Cilleruelo Carrasco E. A method for the detection and characterization of technology fronts: analysis of the dynamics of technological change in 3D printing technology. PLOS One. 2019;14(1):e0210441. doi: 10.1371/journal.pone.0210441, PMID 30615689.

21. Pandian A, Belavek C. A review of recent trends and challenges in 3D printing. 2016 ASEE North Central Section Conference. American Society for Engineering Education; 2016. p. 1-17.

22. Thakar CM, Parkhe SS, Jain A, Phasinam K, Murugesan G, Ventayen RJ. 3D printing: basic principles and applications. Mater Today Proc. 2022;51:842-9. doi: 10.1016/j.matpr.2021.06.272.

23. Xu W, Jambhulkar S, Zhu Y, Ravichandran D, Kakarla M, Vernon B. 3D printing for polymer/particle based processing: a review. Composites Part B: Engineering. 2021 Oct 15;223:109102. doi: 10.1016/j.compositesb.2021.109102.

24. Healy AV, Fuenmayor E, Doran P, Geever LM, Higginbotham CL, Lyons JG. Additive manufacturing of personalized pharmaceutical dosage forms via stereolithography. Pharmaceutics. 2019;11(12):645. doi: 10.3390/pharmaceutics11120645, PMID 31816898.

25. Xu X, Robles Martinez P, Madla CM, Joubert F, Goyanes A, Basit AW. Stereolithography (SLA) 3D printing of an antihypertensive polyprintlet: case study of an unexpected photopolymer drug reaction. Addit Manuf. 2020 May;33:101071. doi: 10.1016/j.addma.2020.101071.

26. Prasad LK, Smyth H. 3D printing technologies for drug delivery: a review. Drug Dev Ind Pharm. 2016;42(7):1019-31. doi: 10.3109/03639045.2015.1120743, PMID 26625986.

27. Giri BR, Song ES, Kwon J, Lee JH, Park JB, Kim DW. Fabrication of intragastric floating controlled release 3D printed theophylline tablets using hot-melt extrusion and fused deposition modeling. Pharmaceutics. 2020;12(1):77. doi: 10.3390/pharmaceutics12010077, PMID 31963484.

28. Konta AA, Garcia Pina M, Serrano DR. Personalised 3D printed medicines: which techniques and polymers are more successful? Bioengineering Basel. 2017;4(4):79. doi: 10.3390/bioengineering4040079, PMID 28952558.

29. Awad A, Fina F, Goyanes A, Gaisford S, Basit AW. 3D printing: principles and pharmaceutical applications of selective laser sintering. Int J Pharm. 2020;586:119594. doi: 10.1016/j.ijpharm.2020.119594, PMID 32622811.

30. Fina F, Goyanes A, Madla CM, Awad A, Trenfield SJ, Kuek JM. 3D printing of drug-loaded gyroid lattices using selective laser sintering. Int J Pharm. 2018;547(1-2):44-52. doi: 10.1016/j.ijpharm.2018.05.044, PMID 29787894.

31. Mazzoli A. Selective laser sintering in biomedical engineering. Med Biol Eng Comput. 2013;51(3):245-56. doi: 10.1007/s11517-012-1001-x, PMID 23250790.

32. Zeng K, Pal D, Stucker B. A review of thermal analysis methods in laser sintering and selective laser melting. International Solid Freeform Fabrication Symposium. 2012. p. 796-814. doi: 10.26153/tsw/15390.

33. Sefene EM. State-of-the-art of selective laser melting process: a comprehensive review. J Manuf Syst. 2022 Mar;63:250-74. doi: 10.1016/j.jmsy.2022.04.002.

34. Jia H, Sun H, Wang H, Wu Y, Wang H. Scanning strategy in selective laser melting (SLM): a review. Int J Adv Manuf Technol. 2021;113(9-10):2413-35. doi: 10.1007/s00170-021-06810-3.

35. Hsiang Loh GH, Pei E, Gonzalez Gutierrez J, Monzon M. An overview of material extrusion troubleshooting. Appl Sci. 2020;10(14):4776. doi: 10.3390/app10144776.

36. Ecker JV, Kracalik M, Hild S, Haider A. 3D material extrusion printing with biopolymers: a review. Chem Mater Eng. 2017;5(4):83-96. doi: 10.13189/cme.2017.050402.

37. Goh GD, Yap YL, Tan HK, Sing SL, Goh GL, Yeong WY. Process structure properties in polymer additive manufacturing via material extrusion: a review. Crit Rev Solid State Mater Sci. 2020;45(2):113-33. doi: 10.1080/10408436.2018.1549977.

38. Ozbolat IT, Peng W, Ozbolat V. Application areas of 3D bioprinting. Drug Discov Today. 2016;21(8):1257-71. doi: 10.1016/j.drudis.2016.04.006, PMID 27086009.

39. Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32(8):773-85. doi: 10.1038/nbt.2958, PMID 25093879.

40. Seol YJ, Kang HW, Lee SJ, Atala A, Yoo JJ. Bioprinting technology and its applications. Eur J Cardiothorac Surg. 2014;46(3):342-8. doi: 10.1093/ejcts/ezu148, PMID 25061217.

41. Daly AC, Prendergast ME, Hughes AJ, Burdick JA. Bioprinting for the biologist. Cell. 2021;184(1):18-32. doi: 10.1016/j.cell.2020.12.002, PMID 33417859.

42. Gungor Ozkerim PS, Inci I, Zhang YS, Khademhosseini A, Dokmeci MR. Bioinks for 3D bioprinting: an overview. Biomater Sci. 2018;6(5):915-46. doi: 10.1039/c7bm00765e, PMID 29492503.

43. Guo Y, Patanwala HS, Bognet B, Ma AW. Inkjet and inkjet-based 3D printing: connecting fluid properties and printing performance. Rapid Prototyp J. 2017;23(3):562-76. doi: 10.1108/RPJ-05-2016-0076.

44. Zub K, Hoeppener S, Schubert US. Inkjet printing and 3D printing strategies for biosensing analytical and diagnostic applications. Adv Mater. 2022;34(31):e2105015. doi: 10.1002/adma.202105015, PMID 35338719.

45. Napadensky E. The chemistry of inkjet inks. In: Chapter: 13. Inkjet 3D Printing; 2009. p. 249-61. doi: 10.1142/9789812818225_0013.

46. Clark EA, Alexander MR, Irvine DJ, Roberts CJ, Wallace MJ, Sharpe S. 3D printing of tablets using inkjet with UV photoinitiation. Int J Pharm. 2017;529(1-2):523-30. doi: 10.1016/j.ijpharm.2017.06.085, PMID 28673860.

47. Mueller J, Shea K, Daraio C. Mechanical properties of parts fabricated with inkjet 3D printing through efficient experimental design. Mater Des. 2015;86:902-12. doi: 10.1016/j.matdes.2015.07.129.

48. Shahrubudin N, Lee TC, Ramlan R. An overview on 3D printing technology: technological materials and applications. Procedia Manuf. 2019;35:1286-96. doi: 10.1016/j.promfg.2019.06.089.

49. Liu J, Sun L, Xu W, Wang Q, Yu S, Sun J. Current advances and future perspectives of 3D printing natural-derived biopolymers. Carbohydr Polym. 2019;207:297-316. doi: 10.1016/j.carbpol.2018.11.077, PMID 30600012.

50. Uhlmann E, Kersting R, Klein TB, Cruz MF, Borille AV. Additive manufacturing of titanium alloy for aircraft components. Procedia CIRP. 2015;35:55-60. doi: 10.1016/j.procir.2015.08.061.

51. Hitzler L, Alifui Segbaya F, Williams P, Heine B, Heitzmann M, Hall W. Additive manufacturing of cobalt-based dental alloys: analysis of microstructure and physicomechanical properties. Adv Mater Sci Eng. 2018;2018(1):1-12. doi: 10.1155/2018/8213023.

52. DebRoy T, Wei HL, Zuback JS, Mukherjee T, Elmer JW, Milewski JO. Additive manufacturing of metallic components process structure and properties. Prog Mater Sci. 2018;92:112-224. doi: 10.1016/j.pmatsci.2017.10.001.

53. Murr LE. Frontiers of 3D printing/additive manufacturing: from human organs to aircraft fabrication. J Mater Sci Technol. 2016;32(10):987-95. doi: 10.1016/j.jmst.2016.08.011.

54. Caminero MA, Chacon JM, Garcia Moreno I, Rodriguez GP. Impact damage resistance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposition modelling. Composites Part B: Engineering. 2018 Apr;148:93-103. doi: 10.1016/j.compositesb.2018.04.054.

55. Wang X, Jiang M, Zhou Z, Gou J, Hui D. 3D printing of polymer matrix composites: a review and prospective. Composites Part B: Engineering. 2017;110:442-58. doi: 10.1016/j.compositesb.2016.11.034.

56. Dizon JR, Espera AH, Chen Q, Advincula RC. Mechanical characterization of 3D-printed polymers. Addit Manuf. 2018;20:44-67. doi: 10.1016/j.addma.2017.12.002.

57. Haleem A, Javaid M. Additive manufacturing applications in industry 4.0: a review. J Ind Intg Mgmt. 2019;4(4):1-23. doi: 10.1142/S2424862219300011.

58. Lee JY, An J, Chua CK. Fundamentals and applications of 3D printing for novel materials. Appl Mater Today. 2017;7:120-33. doi: 10.1016/j.apmt.2017.02.004.

59. Chen Z, Sun X, Shang Y, Xiong K, Xu Z, Guo R. Dense ceramics with complex shape fabricated by 3D printing: a review. J Adv Ceram. 2021;10(2):195-218. doi: 10.1007/s40145-020-0444-z.

60. Zhang Q, Zhou J, Zhi P, Liu L, Liu C, Fang A. 3D printing method for bone tissue engineering scaffold. Med Nov Technol Devices. 2023;17:100205. doi: 10.1016/j.medntd.2022.100205, PMID 36909661.

61. Mani MP, Sadia M, Jaganathan SK, Khudzari AZ, Supriyanto E, Saidin S. A review on 3D printing in tissue engineering applications. J Polym Eng. 2022;42(3):243-65. doi: 10.1515/polyeng-2021-0059.

62. Tao O, Kort Mascort J, Lin Y, Pham HM, Charbonneau AM, ElKashty OA. The applications of 3D printing for craniofacial tissue engineering. Micromachines Basel. 2019;10(7):480. doi: 10.3390/mi10070480, PMID 31319522.

63. Stock UA, Vacanti JP. Tissue engineering: current state and prospects. Annual Review of Medicine. 2001;52(1):443-51. doi: 10.1146/annurev.med.52.1.443.

64. Laurencin CT, Ambrosio AM, Borden MD, Cooper JA. Tissue engineering: orthopedic applications. Annu Rev Biomed Eng. 1999;1:19-46. doi: 10.1146/annurev.bioeng.1.1.19, PMID 11701481.

65. Peltola SM, Melchels FP, Grijpma DW, Kellomaki M. A review of rapid prototyping techniques for tissue engineering purposes. Ann Med. 2008;40(4):268-80. doi: 10.1080/07853890701881788, PMID 18428020.

66. Sipe JD. Tissue engineering and reparative medicine. Ann N Y Acad Sci. 2002;961:1-9. doi: 10.1111/j.1749-6632.2002.tb03040.x, PMID 12081856.

67. Thomas AC, Campbell GR, Campbell JH. Advances in vascular tissue engineering. Cardiovasc Pathol. 2003;12(5):271-6. doi: 10.1016/S1054-8807(03)00086-3, PMID 14507577.

68. Asmaria T, Sajuti D, Ain K. 3D printed PLA of gallbladder for virtual surgery planning. AIP Conf Proc. 2020 Apr;2232. doi: 10.1063/5.0001732.

69. Serris I, Serris P, Frey KM, Cho H. Development of 3D-printed layered PLGA films for drug delivery and evaluation of drug release behaviors. AAPS PharmSciTech. 2020;21(7):256. doi: 10.1208/s12249-020-01790-1, PMID 32888114.

70. Mohapatra S, Kar RK, Biswal PK, Bindhani S. Approaches of 3D printing in current drug delivery. Sensors International. 2022;3:100146. doi: 10.1016/j.sintl.2021.100146.

71. Nasiri G, Ahmadi S, Shahbazi MA, Nosrati Siahmazgi V, Fatahi Y, Dinarvand R. 3D printing of bioactive materials for drug delivery applications. Expert Opin Drug Deliv. 2022;19(9):1061-80. doi: 10.1080/17425247.2022.2112944, PMID 35953890.

72. Karavasili C, Eleftheriadis GK, Gioumouxouzis C, Andriotis EG, Fatouros DG. Mucosal drug delivery and 3D printing technologies: a focus on special patient populations. Adv Drug Deliv Rev. 2021;176:113858. doi: 10.1016/j.addr.2021.113858, PMID 34237405.

73. Xu X, Awad A, Robles Martinez P, Gaisford S, Goyanes A, Basit AW. Vat photopolymerization 3D printing for advanced drug delivery and medical device applications. J Control Release. 2021;329:743-57. doi: 10.1016/j.jconrel.2020.10.008, PMID 33031881.

74. Diogo C. 3D printing of pharmaceutical drug delivery systems. Archives of Organic and Inorganic Chemical Sciences. 2018;1(2):1-5. doi: 10.32474/AOICS.2018.01.000109.

75. Dubashynskaya NV, Petrova VA, Skorik YA. Biopolymer drug delivery systems for oromucosal application: recent trends in pharmaceutical R & D. Int J Mol Sci. 2024;25(10):5359. doi: 10.3390/ijms25105359, PMID 38791397.

76. Tian Y, Orlu M, Woerdenbag HJ, Scarpa M, Kiefer O, Kottke D. Oromucosal films: from patient centricity to production by printing techniques. Expert Opin Drug Deliv. 2019;16(9):981-93. doi: 10.1080/17425247.2019.1652595, PMID 31382842.

77. Eleftheriadis GK, Ritzoulis C, Bouropoulos N, Tzetzis D, Andreadis DA, Boetker J. Unidirectional drug release from 3D printed mucoadhesive buccal films using FDM technology: in vitro and ex vivo evaluation. Eur J Pharm Biopharm. 2019;144:180-92. doi: 10.1016/j.ejpb.2019.09.018, PMID 31550525.

78. Arany P, Papp I, Zichar M, Regdon G, Beres M, Szaloki M. Manufacturing and examination of vaginal drug delivery system by fdm 3d printing. Pharmaceutics. 2021;13(10):1714. doi: 10.3390/pharmaceutics13101714, PMID 34684007.

79. Fu J, Yu X, Jin Y. 3D printing of vaginal rings with personalized shapes for controlled release of progesterone. Int J Pharm. 2018;539(1-2):75-82. doi: 10.1016/j.ijpharm.2018.01.036, PMID 29366944.

80. Elkasabgy NA, Mahmoud AA, Maged A. 3D printing: an appealing route for customized drug delivery systems. Int J Pharm. 2020 Jul;588:119732. doi: 10.1016/j.ijpharm.2020.119732, PMID 32768528.

81. Xu X, Awwad S, Diaz Gomez L, Alvarez Lorenzo C, Brocchini S, Gaisford S. 3D printed punctal plugs for controlled ocular drug delivery. Pharmaceutics. 2021;13(9):1421. doi: 10.3390/pharmaceutics13091421, PMID 34575497.

82. Mostafa M, Al Fatease A, Alany RG, Abdelkader H. Recent advances of ocular drug delivery systems: prominence of ocular implants for chronic eye diseases. Pharmaceutics. 2023;15(6):1746. doi: 10.3390/pharmaceutics15061746, PMID 37376194.

83. Ahmed S, Amin MM, Sayed S. Ocular drug delivery: a comprehensive review. AAPS PharmSciTech. 2023;24(2):66. doi: 10.1208/s12249-023-02516-9, PMID 36788150.

Published

15-09-2025

How to Cite

INGLE, ANIKET S., et al. “THE POTENTIAL OF 3D PRINTING IN DRUG DELIVERY AND TISSUE ENGINEERING”. International Journal of Current Pharmaceutical Research, vol. 17, no. 5, Sept. 2025, pp. 22-30, doi:10.22159/ijcpr.2025v17i5.7038.

Issue

Section

Review Article(s)