EXPLORING MODERN TECHNIQUES FOR SOLUBILITY ENHANCEMENT IN DRUG FORMULATIONS

Authors

  • PRIYANKA V. BAGADE Progressive Education Society’s Modern College of Pharmacy (For Ladies) Moshi, Pune, Maharashtra, India https://orcid.org/0009-0001-2670-7368
  • NILESH S. KULKARNI Progressive Education Society’s Modern College of Pharmacy (For Ladies) Moshi, Pune, Maharashtra, India
  • PRAVIN D. CHAUDHARI Progressive Education Society’s Modern College of Pharmacy Nigdi Pune, Maharashtra, India
  • SHASHIKANT N. DHOLE Progressive Education Society’s Modern College of Pharmacy (For Ladies) Moshi, Pune, Maharashtra, India
  • UJWALA S. DESAI Progressive Education Society’s Modern College of Pharmacy Nigdi Pune, Maharashtra, India https://orcid.org/0000-0001-6510-0385

DOI:

https://doi.org/10.22159/ijcpr.2025v17i5.7044

Keywords:

Solubility Enhancement, Drug Bioavailability, Nanotechnology-Based Formulations, Pharmaceutical product Development

Abstract

By addressing the critical gaps in current practices, the objective of the review is to highlight emerging trends and provides insights into the optimization of drug solubility for improved pharmacological outcomes. The literature search was done and rlevent articles were collected from various database like Springer, Science Direct, Taylor and Francis, Wiley and pubmed.

Poor solubility of active pharmaceutical ingredients (APIs) significantly hinders their bioavailability and therapeutic efficacy, presenting a critical challenge in drug formulation. This review provides a comprehensive exploration of traditional and advanced techniques for solubility enhancement. Established methods, including salt formation, particle size reduction, and pH adjustment, are compared with cutting-edge strategies such as nanotechnology, electrospun nanofibers, spray drying, and supercritical fluid technology. These innovative approaches leverage mechanisms like particle size reduction, amorphization, and nanostructure engineering to enhance dissolution rates, stability, and controlled release profiles. The article discusses the Biopharmaceutical Classification System (BCS) and its relevance in tailoring solubility enhancement strategies for poorly water-soluble compounds.

Downloads

Download data is not yet available.

References

1. Nyamba I, Sombie CB, Yabre M, Zime Diawara H, Yameogo J, Ouedraogo S. Pharmaceutical approaches for enhancing solubility and oral bioavailability of poorly soluble drugs. Eur J Pharm Biopharm. 2024;204:114513. doi: 10.1016/j.ejpb.2024.114513, PMID 39313163.

2. Chettri A, Subba A, Singh GP, Bag PP. Pharmaceutical co-crystals: a green way to enhance drug stability and solubility for improved therapeutic efficacy. J Pharm Pharmacol. 2024;76(1):1-12. doi: 10.1093/jpp/rgad097, PMID 37934904.

3. Salunke S, O Brien F, Cheng Thiam Tan DC, Harris D, Math MC, Arien T. Oral drug delivery strategies for development of poorly water soluble drugs in paediatric patient population. Adv Drug Deliv Rev. 2022;190:114507. doi: 10.1016/j.addr.2022.114507, PMID 36049580.

4. Ueda K, Moseson DE, Taylor LS. Amorphous solubility advantage: theoretical considerations, experimental methods and contemporary relevance. J Pharm Sci. 2025;114(1):18-39. doi: 10.1016/j.xphs.2024.08.029, PMID 39222748.

5. Buya AB, Beloqui A, Memvanga PB, Preat V. Self-nano-emulsifying drug delivery systems: from the development to the current applications and challenges in oral drug delivery. Pharmaceutics. 2020;12(12):1194. doi: 10.3390/pharmaceutics12121194, PMID 33317067.

6. Khan KU, Minhas MU, Badshah SF, Suhail M, Ahmad A, Ijaz S. Overview of nanoparticulate strategies for solubility enhancement of poorly soluble drugs. Life Sci. 2022;291:120301. doi: 10.1016/j.lfs.2022.120301, PMID 34999114.

7. Das B, Baidya AT, Mathew AT, Yadav AK, Kumar R. Structural modification aimed for improving solubility of lead compounds in early phase drug discovery. Bioorg Med Chem. 2022;56:116614. doi: 10.1016/j.bmc.2022.116614, PMID 35033884.

8. Khadka P, Ro J, Kim H, Kim I, Kim JT, Kim H. Pharmaceutical particle technologies: an approach to improve drug solubility, dissolution and bioavailability. Asian J Pharm Sci. 2014;9(6):304-16. doi: 10.1016/j.ajps.2014.05.005.

9. Chaudhary N, Tripathi D, Rai AK. A technical approach of solubility enhancement of poorly soluble drugs: liquisolid technique. Curr Drug Deliv. 2020;17(8):638-50. doi: 10.2174/1567201817666200516155733, PMID 32416691.

10. Xie B, Liu Y, Li X, Yang P, He W. Solubilization techniques used for poorly water-soluble drugs. Acta Pharmacol Sin B. 2024;14(11):4683-716. doi: 10.1016/j.apsb.2024.08.027, PMID 39664427.

11. Csicsak D, Szollath R, Kadar S, Ambrus R, Bartos C, Balogh E. The effect of the particle size reduction on the biorelevant solubility and dissolution of poorly soluble drugs with different acid base character. Pharmaceutics. 2023;15(1):278. doi: 10.3390/pharmaceutics15010278, PMID 36678907.

12. Nykamp G, Carstensen U, Muller BW. Jet milling a new technique for microparticle preparation. Int J Pharm. 2002;242(1-2):79-86. doi: 10.1016/S0378-5173(02)00150-3, PMID 12176228.

13. Shariare MH, Blagden N, De De Matas M, Leusen FJ, York P. Influence of solvent on the morphology and subsequent comminution of ibuprofen crystals by air jet milling. J Pharm Sci. 2012;101(3):1108-19. doi: 10.1002/jps.23003, PMID 22161641.

14. Shariare MH, De Matas M, York P. Effect of crystallisation conditions and feedstock morphology on the aerosolization performance of micronised salbutamol sulphate. Int J Pharm. 2011;415(1-2):62-72. doi: 10.1016/j.ijpharm.2011.05.043, PMID 21683128.

15. Loh ZH, Samanta AK, Sia Heng PW. Overview of milling techniques for improving the solubility of poorly water soluble drugs. Asian J Pharm Sci. 2015;10(4):255-74. doi: 10.1016/j.ajps.2014.12.006.

16. Vogt M, Vertzoni M, Kunath K, Reppas C, Dressman JB. Cogrinding enhances the oral bioavailability of EMD 57033, a poorly water soluble drug in dogs. Eur J Pharm Biopharm. 2008;68(2):338-45. doi: 10.1016/j.ejpb.2007.06.011, PMID 17646091.

17. Llorente A, Serrano B, Baselga J, Gedler G, Ozisik R. Jet milling as an alternative processing technique for preparing polysulfone hard nanocomposites. Adv Mater Sci Eng. 2019;2019:1-8. doi: 10.1155/2019/3501402.

18. Djokic M, Djuris J, Solomun L, Kachrimanis K, Djuric Z, Ibric S. The influence of spiral jet milling on the physicochemical properties of carbamazepine form III crystals: quality by design approach. Chem Eng Res Des. 2014;92(3):500-8. doi: 10.1016/j.cherd.2013.09.011.

19. Martinez LM, Cruz Angeles J, Vazquez Davila M, Martinez E, Cabada P, Navarrete Bernal C. Mechanical activation by ball milling as a strategy to prepare highly soluble pharmaceutical formulations in the form of co-amorphous co-crystals or polymorphs. Pharmaceutics. 2022;14(10):2003. doi: 10.3390/pharmaceutics14102003, PMID 36297439.

20. Czajkowska Kosnik A, Misztalewska Turkowicz I, Wilczewska AZ, Basa A, Winnicka K. Solid dispersions obtained by ball milling as delivery platform of etodolac a model poorly soluble drug. Materials (Basel). 2024;17(16):3923. doi: 10.3390/ma17163923, PMID 39203102.

21. Homayouni A, Sohrabi M, Amini M, Varshosaz J, Nokhodchi A. Effect of high pressure homogenization on physicochemical properties of curcumin nanoparticles prepared by antisolvent crystallization using HPMC or PVP. Mater Sci Eng C Mater Biol Appl. 2019;98:185-96. doi: 10.1016/j.msec.2018.12.128, PMID 30813018.

22. Karmwar P, Graeser K, Gordon KC, Strachan CJ, Rades T. Effect of different preparation methods on the dissolution behaviour of amorphous indomethacin. Eur J Pharm Biopharm. 2012;80(2):459-64. doi: 10.1016/j.ejpb.2011.10.006, PMID 22019529.

23. Karmwar P, Graeser K, Gordon KC, Strachan CJ, Rades T. Investigation of properties and recrystallisation behaviour of amorphous indomethacin samples prepared by different methods. Int J Pharm. 2011;417(1-2):94-100. doi: 10.1016/j.ijpharm.2010.12.019, PMID 21182910.

24. Wojnarowska Z, Grzybowska K, Adrjanowicz K, Kaminski K, Paluch M, Hawelek L. Study of the amorphous glibenclamide drug: analysis of the molecular dynamics of quenched and cryomilled material. Mol Pharm. 2010;7(5):1692-707. doi: 10.1021/mp100077c, PMID 20669906.

25. Bhatia M, Devi S. Co-crystallization: a green approach for the solubility enhancement of poorly soluble drugs. CrystEngComm. 2024;26(3):293-311. doi: 10.1039/D3CE01047C.

26. Eesam S, Bhandaru JS, Naliganti C, Bobbala RK, Akkinepally RR. Solubility enhancement of carvedilol using drug–drug cocrystallization with hydrochlorothiazide. Futur J Pharm Sci. 2020;6(1):77. doi: 10.1186/s43094-020-00083-5.

27. Skrdla PJ, Floyd PD, Dell Orco PC. Predicting the solubility enhancement of amorphous drugs and related phenomena using basic thermodynamic principles and semi-empirical kinetic models. Int J Pharm. 2019;567:118465. doi: 10.1016/j.ijpharm.2019.118465, PMID 31279056.

28. Bhujbal SV, Mitra B, Jain U, Gong Y, Agrawal A, Karki S. Pharmaceutical amorphous solid dispersion: a review of manufacturing strategies. Acta Pharmacol Sin B. 2021;11(8):2505-36. doi: 10.1016/j.apsb.2021.05.014, PMID 34522596.

29. Kumari L, Choudhari Y, Patel P, Gupta GD, Singh D, Rosenholm JM. Advancement in solubilization approaches: a step towards bioavailability enhancement of poorly soluble drugs. Life (Basel). 2023;13(5):1099. doi: 10.3390/life13051099, PMID 37240744.

30. Taniguchi C, Kawabata Y, Wada K, Yamada S, Onoue S. Microenvironmental pH-modification to improve dissolution behavior and oral absorption for drugs with pH-dependent solubility. Expert Opin Drug Deliv. 2014;11(4):505-16. doi: 10.1517/17425247.2014.881798, PMID 24472170.

31. Tran TT, Tran PH, Choi HG, Han HK, Lee BJ. The roles of acidifiers in solid dispersions and physical mixtures. Int J Pharm. 2010;384(1-2):60-6. doi: 10.1016/j.ijpharm.2009.09.039, PMID 19782736.

32. Almotairy A, Almutairi M, Althobaiti A, Alyahya M, Sarabu S, Alzahrani A. Effect of pH modifiers on the solubility dissolution rate and stability of telmisartan solid dispersions produced by hot-melt extrusion technology. J Drug Deliv Sci Technol. 2021;65:102674. doi: 10.1016/j.jddst.2021.102674, PMID 34552669.

33. Wu H, Ma J, Qian S, Jiang W, Liu Y, Li J. Co-amorphization of posaconazole using citric acid as an acidifier and a co-former for solubility improvement. J Drug Deliv Sci Technol. 2023;80:104136. doi: 10.1016/j.jddst.2022.104136.

34. Kumar V, Bharate SB, Vishwakarma RA, Bharate SS. Selection of a water soluble salt form of a preclinical candidate IIIM-290: multiwall plate salt screening and characterization. ACS Omega. 2018;3(7):8365-77. doi: 10.1021/acsomega.8b00801, PMID 30087943.

35. Serajuddin AT. Salt formation to improve drug solubility. Adv Drug Deliv Rev. 2007;59(7):603-16. doi: 10.1016/j.addr.2007.05.010, PMID 17619064.

36. Gupta D, Bhatia D, Dave V, Sutariya V, Varghese Gupta S. Salts of therapeutic agents: chemical physicochemical and biological considerations. Molecules. 2018;23(7):1719. doi: 10.3390/molecules23071719, PMID 30011904.

37. Dwichandra Putra O, Umeda D, Fujita E, Haraguchi T, Uchida T, Yonemochi E. Solubility improvement of benexate through salt formation using artificial sweetener. Pharmaceutics. 2018;10(2):64. doi: 10.3390/pharmaceutics10020064, PMID 29861459.

38. Choudhury H, Gorain B, Madheswaran T, Pandey M, Kesharwani P, Tekade RK. Drug complexation. In: dosage form design considerations. Amsterdam: Elsevier; 2018. p. 473-512. doi: 10.1016/B978-0-12-814423-7.00014-9.

39. Kali G, Haddadzadegan S, Bernkop Schnurch A. Cyclodextrins and derivatives in drug delivery: new developments relevant clinical trials and advanced products. Carbohydr Polym. 2024;324:121500. doi: 10.1016/j.carbpol.2023.121500, PMID 37985088.

40. Loh GO, Tan YT, Peh KK. Enhancement of norfloxacin solubility via inclusion complexation with β-cyclodextrin and its derivative hydroxypropyl-β-cyclodextrin. Asian J Pharm Sci. 2016;11(4):536-46. doi: 10.1016/j.ajps.2016.02.009.

41. Yallapu MM, Jaggi M, Chauhan SC. β-Cyclodextrin curcumin self-assembly enhances curcumin delivery in prostate cancer cells. Colloids Surf B Biointerfaces. 2010;79(1):113-25. doi: 10.1016/j.colsurfb.2010.03.039, PMID 20456930.

42. Pandi P, Bulusu R, Kommineni N, Khan W, Singh M. Amorphous solid dispersions: an update for preparation characterization mechanism on bioavailability stability regulatory considerations and marketed products. Int J Pharm. 2020;586:119560. doi: 10.1016/j.ijpharm.2020.119560, PMID 32565285.

43. Zu Y, Wu W, Zhao X, Li Y, Zhong C, Zhang Y. The high water solubility of inclusion complex of taxifolin-γ-CD prepared and characterized by the emulsion solvent evaporation and the freeze drying combination method. Int J Pharm. 2014;477(1-2):148-58. doi: 10.1016/j.ijpharm.2014.10.027, PMID 25455767.

44. Sid D, Baitiche M, Elbahri Z, Djerboua F, Boutahala M, Bouaziz Z. Solubility enhancement of mefenamic acid by inclusion complex with β-cyclodextrin: in silico modelling formulation characterisation and in vitro studies. J Enzyme Inhib Med Chem. 2021;36(1):605-17. doi: 10.1080/14756366.2020.1869225, PMID 33557644.

45. Rezaee F, Ghoreishi SM, Saadati Ardestani N. Precipitation of advanced nanomedicines (curcumin) using supercritical processing; experimental study design and optimizing operating conditions. J Drug Deliv Sci Technol. 2024;99:105989. doi: 10.1016/j.jddst.2024.105989.

46. Sharma A, Singh M, Sharma V, Vashishth A, Raj M, Upadhyay SK. Current paradigms in employing self-assembled structures: drug delivery implications with improved therapeutic potential. Colloids Surf B Biointerfaces. 2024;234:113745. doi: 10.1016/j.colsurfb.2024.113745, PMID 38241890.

47. El Hamd MA, Obaydo RH, Nashed D, El Maghrabey M, Lotfy HM. Hydrotropy and co-solvency: sustainable strategies for enhancing solubility of poorly soluble pharmaceutical active ingredients. Talanta Open. 2025 Aug;11:100391. doi: 10.1016/j.talo.2024.100391.

48. Kankala RK, Zhang YS, Wang SB, Lee CH, Chen AZ. Supercritical fluid technology: an emphasis on drug delivery and related biomedical applications. Adv Healthc Mater. 2017 Aug;6(16):201700433. doi: 10.1002/adhm.201700433, PMID 28752598.

49. Tran P, Park JS. Application of supercritical fluid technology for solid dispersion to enhance solubility and bioavailability of poorly water soluble drugs. Int J Pharm. 2021;610:121247. doi: 10.1016/j.ijpharm.2021.121247, PMID 34740762.

50. Wang X, He S, Wang K, Wang X, Yan T, Yan T. Fabrication of betamethasone micro and nanoparticles using supercritical antisolvent technology: in vitro drug release study and Caco-2 cell cytotoxicity evaluation. Eur J Pharm Sci. 2023;181:106341. doi: 10.1016/j.ejps.2022.106341, PMID 36435356.

51. Misra SK, Pathak K. Supercritical fluid technology for solubilization of poorly water soluble drugs via micro and naonosized particle generation. ADMET DMPK. 2020;8(4):355-74. doi: 10.5599/admet.811, PMID 35300190.

52. O Sullivan A, Long B, Verma V, Ryan KM, Padrela L. Solid state and particle size control of pharmaceutical cocrystals using atomization based techniques. Int J Pharm. 2022;621:121798. doi: 10.1016/j.ijpharm.2022.121798, PMID 35525471.

53. Cocero MJ, Martin A, Mattea F, Varona S. Encapsulation and co-precipitation processes with supercritical fluids: fundamentals and applications. J Supercrit Fluids. 2009;47(3):546-55. doi: 10.1016/j.supflu.2008.08.015.

54. Seedher N, Kanojia M. Micellar solubilization of some poorly soluble antidiabetic drugs: a technical note. AAPS PharmSciTech. 2008;9(2):431-6. doi: 10.1208/s12249-008-9057-5, PMID 18431666.

55. Mazzotta E, Chieffallo M, Muzzalupo R, Spingola M, Caputo P, Romeo M. Formulation of polymeric micelles to increase the solubility and photostability of caffeic acid. Molecules. 2024;29(14):3329. doi: 10.3390/molecules29143329, PMID 39064907.

56. Italiya KS, Basak M, Mazumdar S, Sahel DK, Shrivastava R, Chitkara D. Scalable self-assembling micellar system for enhanced oral bioavailability and efficacy of lisofylline for treatment of type-I diabetes. Mol Pharm. 2019;16(12):4954-67. doi: 10.1021/acs.molpharmaceut.9b00833, PMID 31647676.

57. Shimizu S, Matubayasi N. The origin of cooperative solubilisation by hydrotropes. Phys Chem Chem Phys. 2016;18(36):25621-8. doi: 10.1039/C6CP04823D, PMID 27711657.

58. Silva SS, Abranches DO, Pinto AS, Soares BP, Passos H, Ferreira AM. Solubility enhancement of hydrophobic compounds in aqueous solutions using biobased solvents as hydrotropes. Ind Eng Chem Res. 2023;62(30):12021-8. doi: 10.1021/acs.iecr.3c01469.

59. Boyd BJ, Bergström CA, Vinarov Z, Kuentz M, Brouwers J, Augustijns P. Successful oral delivery of poorly water-soluble drugs both depends on the intraluminal behavior of drugs and of appropriate advanced drug delivery systems. Eur J Pharm Sci. 2019;137:104967. doi: 10.1016/j.ejps.2019.104967, PMID 31252052.

60. Tran TT, Tran KA, Tran PH. Modulation of particle size and molecular interactions by sonoprecipitation method for enhancing dissolution rate of poorly water soluble drug. Ultrason Sonochem. 2015;24:256-63. doi: 10.1016/j.ultsonch.2014.11.020, PMID 25500098.

61. Dhumal RS, Biradar SV, Yamamura S, Paradkar AR, York P. Preparation of amorphous cefuroxime axetil nanoparticles by sonoprecipitation for enhancement of bioavailability. Eur J Pharm Biopharm. 2008;70(1):109-15. doi: 10.1016/j.ejpb.2008.04.001, PMID 18502628.

62. Wang X, Majzoobi M, Farahnaky A. Ultrasound-assisted modification of functional properties and biological activity of biopolymers: a review. Ultrason Sonochem. 2020;65:105057. doi: 10.1016/j.ultsonch.2020.105057, PMID 32172150.

63. Mazumder S, Dewangan AK, Pavurala N. Enhanced dissolution of poorly soluble antiviral drugs from nanoparticles of cellulose acetate based solid dispersion matrices. Asian J Pharm Sci. 2017;12(6):532-41. doi: 10.1016/j.ajps.2017.07.002, PMID 32104366.

64. Arabestani MR, Bigham A, Kamarehei F, Dini M, Gorjikhah F, Shariati A. Solid lipid nanoparticles and their application in the treatment of bacterial infectious diseases. Biomed Pharmacother. 2024;174:116433. doi: 10.1016/j.biopha.2024.116433, PMID 38508079.

65. Azevedo C, Macedo MH, Sarmento B. Strategies for the enhanced intracellular delivery of nanomaterials. Drug Discov Today. 2018;23(5):944-59. doi: 10.1016/j.drudis.2017.08.011, PMID 28919437.

66. Zhang Z, Lu Y, Qi J, Wu W. An update on oral drug delivery via intestinal lymphatic transport. Acta Pharmacol Sin B. 2021;11(8):2449-68. doi: 10.1016/j.apsb.2020.12.022, PMID 34522594.

67. Chalikwar SS, Belgamwar VS, Talele VR, Surana SJ, Patil MU. Formulation and evaluation of nimodipine loaded solid lipid nanoparticles delivered via lymphatic transport system. Colloids Surf B Biointerfaces. 2012;97:109-16. doi: 10.1016/j.colsurfb.2012.04.027, PMID 22609590.

68. Kumar VV, Chandrasekar D, Ramakrishna S, Kishan V, Rao YM, Diwan PV. Development and evaluation of nitrendipine loaded solid lipid nanoparticles: influence of wax and glyceride lipids on plasma pharmacokinetics. Int J Pharm. 2007;335(1-2):167-75. doi: 10.1016/j.ijpharm.2006.11.004, PMID 17161566.

69. Wilson RJ, Li Y, Yang G, Zhao CX. Nanoemulsions for drug delivery. Particuology. 2022;64:85-97. doi: 10.1016/j.partic.2021.05.009.

70. Mushtaq A, Mohd Wani S, Malik AR, Gull A, Ramniwas S, Ahmad Nayik G. Recent insights into nanoemulsions: their preparation properties and applications. Food Chem X. 2023;18:100684. doi: 10.1016/j.fochx.2023.100684, PMID 37131847.

71. Van Jaarsveld E, Du Plessis J, Du Preez JL, Shahzad Y, Gerber M. Formulation and characterisation of artemether loaded nano-emulsion for topical applications. J Drug Deliv Sci Technol. 2022;73:103449. doi: 10.1016/j.jddst.2022.103449.

72. Wooster TJ, Golding M, Sanguansri P. Impact of oil type on nanoemulsion formation and Ostwald ripening stability. Langmuir. 2008;24(22):12758-65. doi: 10.1021/la801685v, PMID 18850732.

73. Ali HH, Hussein AA. Oral nanoemulsions of candesartan cilexetil: formulation characterization and in vitro drug release studies. AAPS Open. 2017;3(1):4. doi: 10.1186/s41120-017-0016-7.

74. Hormann K, Zimmer A. Drug delivery and drug targeting with parenteral lipid nanoemulsions a review. J Control Release. 2016;223:85-98. doi: 10.1016/j.jconrel.2015.12.016, PMID 26699427.

75. Choradiya BR, Patil SB. A comprehensive review on nanoemulsion as an ophthalmic drug delivery system. J Mol Liq. 2021;339:116751. doi: 10.1016/j.molliq.2021.116751.

76. Thapa R, Sai K, Saha D, Kushwaha D, Aswal VK, Ghosh Moulick RG. Synthesis and characterization of a nanoemulsion system for solubility enhancement of poorly water-soluble non-steroidal anti-inflammatory drugs. J Mol Liq. 2021;334:115998. doi: 10.1016/j.molliq.2021.115998.

77. Zoller K, Laffleur F, Claus V, Knoll P, To D, Bernkop Schnurch A. Development and in vivo evaluation of nanoemulsions for oral delivery of low molecular weight heparin. J Drug Deliv Sci Technol. 2023;86:104686. doi: 10.1016/j.jddst.2023.104686.

78. He H, Lu Y, Qi J, Zhu Q, Chen Z, Wu W. Adapting liposomes for oral drug delivery. Acta Pharm Sin B. 2019;9(1):36-48. doi: 10.1016/j.apsb.2018.06.005, PMID 30766776.

79. Fresta M, Villari A, Puglisi G, Cavallaro G. 5-fluorouracil: various kinds of loaded liposomes: encapsulation efficiency storage stability and fusogenic properties. International Journal of Pharmaceutics. 1993;99(2-3):145-56. doi: 10.1016/0378-5173(93)90356-K.

80. Eugster R, Luciani P. Liposomes: bridging the gap from lab to pharmaceuticals. Curr Opin Colloid Interface Sci. 2025;75:101875. doi: 10.1016/j.cocis.2024.101875.

81. Loew S, Fahr A, May S. Modeling the release kinetics of poorly water soluble drug molecules from liposomal nanocarriers. J Drug Deliv. 2011;2011:376548. doi: 10.1155/2011/376548, PMID 21773045.

82. Aloisio C, Antimisiaris SG, Longhi MR. Liposomes containing cyclodextrins or meglumine to solubilize and improve the bioavailability of poorly soluble drugs. J Mol Liq. 2017;229:106-13. doi: 10.1016/j.molliq.2016.12.035.

83. Sharma VM, Valsaraj TV, Venkataramana Sudeep H, Raj A, Kodimule S, Jacob J. Preparation characterization in vitro and in vivo studies of liposomal berberine using novel natural fiber interlaced liposomal technology. Eur J Pharm Biopharm. 2024;203:114431. doi: 10.1016/j.ejpb.2024.114431, PMID 39094668.

84. Kajdic S, Zupancic S, Roskar R, Kocbek P. The potential of nanofibers to increase solubility and dissolution rate of the poorly soluble and chemically unstable drug lovastatin. Int J Pharm. 2020;573:118809. doi: 10.1016/j.ijpharm.2019.118809, PMID 31678525.

85. Abdulhussain R, Adebisi A, Conway BR, Asare Addo K. Electrospun nanofibers: exploring process parameters polymer selection and recent applications in pharmaceuticals and drug delivery. J Drug Deliv Sci Technol. 2023;90:105156. doi: 10.1016/j.jddst.2023.105156.

86. Shafi H, Reddy DV, Rashid R, Roy T, Kawoosa S, Bader GN. Optimizing the fabrication of electrospun nanofibers of prochlorperazine for enhanced dissolution and permeation properties. Biomater Adv. 2024;158:213773. doi: 10.1016/j.bioadv.2024.213773, PMID 38277903.

87. Hartini N, Wu YS, Kusumaningtyas RD, Sriariyanun M, Wu JJ, Cheng YS. Solubility enhancement of curcumin via fast dissolving electrospun nanofibrous mats comprising jelly fig polysaccharides and pullulan. J Taiwan Inst Chem Eng. 2024;160:105346. doi: 10.1016/j.jtice.2024.105346.

88. Gia Thien Ho T, Huynh TK, Le TK, Nguyen LH, Ton AK, Phan NK. Fabrication and characterization of electrospun diosmetin loaded membranes for enhanced solubility. Chemistry Select. 2024;9(19):e202400633. doi: 10.1002/slct.202400633.

89. Begum SK, Varma MM, Raju DB, Prasad RG, Phani AR, Jacob B. Enhancement of dissolution rate of piroxicam by electrospinning technique. Adv Nat Sci: Nanosci Nanotechnol. 2012;3(4):45012. doi: 10.1088/2043-6262/3/4/045012.

90. Xing X, Ouyang J, Guo S, Chen M, Gao Z, He F. Spherical particles design of vanillin via crystallization method: preparation characterization and mechanism. Sep Purif Technol. 2023 Jun 1;314:123622. doi: 10.1016/j.seppur.2023.123622.

91. Pitt K, Pena R, Tew JD, Pal K, Smith R, Nagy ZK. Particle design via spherical agglomeration: a critical review of controlling parameters rate processes and modelling. Powder Technol. 2018;326:327-43. doi: 10.1016/j.powtec.2017.11.052.

92. Honmane S, Kadam A, Choudhari S, Patil R, Ansari SA, Gaikwad V. Effect of polymers and process parameters in augmenting the compactability and dissolution behaviour of oxcarbazepine spherical agglomerates. J Drug Deliv Sci Technol. 2021;64:102578. doi: 10.1016/j.jddst.2021.102578.

93. Varia U, Patel A, Katariya H, Detholia K. Formulation and optimization of polymeric agglomerates of bosentan monohydrate by crystallo-co-agglomeration technique. Bull Natl Res Cent. 2022;46(1):156. doi: 10.1186/s42269-022-00837-6.

94. Hussain Y, Cui J, Dormocara A, Khan H. The most recent advances in liquisolid technology: perspectives in the pharmaceutical industry. Pharmaceutical Science Advances. 2024 Dec;2:100038. doi: 10.1016/j.pscia.2024.100038.

95. Lu M, Xing H, Jiang J, Chen X, Yang T, Wang D. Liquisolid technique and its applications in pharmaceutics. Asian J Pharm Sci. 2017;12(2):115-23. doi: 10.1016/j.ajps.2016.09.007, PMID 32104320.

96. Prajapat MD, Butani SB, Gohel MC. Liquisolid: a promising technique to improve dissolution efficiency and bioavailability of poorly water soluble nimodipine. J Drug Deliv Sci Technol. 2019;53:101135. doi: 10.1016/j.jddst.2019.101135.

97. Aghajanpour S, Yousefi Jordehi S, Farmoudeh A, Negarandeh R, Lam M, Ebrahimnejad P. Applying liquisolid technique to enhance curcumin solubility: a central composite design study. Chem Pap. 2024;78(17):9257-71. doi: 10.1007/s11696-024-03741-7.

98. Swain RP, Elhassan GO, Bhattacharjee A, Sahu RK, Khan J. Improved dissolution time and oral bioavailability of pioglitazone using liquisolid tablets: formulation in vitro characterization and in vivo pharmacokinetics in rabbits. ACS Omega. 2024;9(42):42687-97. doi: 10.1021/acsomega.3c09145, PMID 39464449.

99. Pardeshi SR, Deshmukh NS, Telange DR, Nangare SN, Sonar YY, Lakade SH. Process development and quality attributes for the freeze drying process in pharmaceuticals biopharmaceuticals and nanomedicine delivery: a state of the art review. Futur J Pharm Sci. 2023;9(1):99. doi: 10.1186/s43094-023-00551-8.

100. Ni N, Tesconi M, Tabibi SE, Gupta S, Yalkowsky SH. Use of pure t-butanol as a solvent for freeze drying: a case study. Int J Pharm. 2001;226(1-2):39-46. doi: 10.1016/S0378-5173(01)00757-8, PMID 11532568.

101. Almeida H, Ferreira B, Fernandes Lopes C, Araujo F, Bonifacio MJ, Vasconcelos T. Third generation solid dispersion through lyophilization enhanced oral bioavailability of resveratrol. ACS Pharmacol Transl Sci. 2024;7(3):888-98. doi: 10.1021/acsptsci.4c00029, PMID 38481698.

102. Wiergowska G, Ludowicz D, Wdowiak K, Miklaszewski A, Lewandowska K, Cielecka Piontek J. Combinations of freeze dried amorphous vardenafil hydrochloride with saccharides as a way to enhance dissolution rate and permeability. Pharmaceuticals (Basel). 2021;14(5):453. doi: 10.3390/ph14050453, PMID 34064796.

103. Ali AM, Al Remawi MM. Freeze dried quetiapine nicotinamide binary solid dispersions: a new strategy for improving physicochemical properties and ex vivo diffusion. J Pharm (Cairo). 2016;2016:2126056. doi: 10.1155/2016/2126056, PMID 28042494.

104. Patil A, Patil P, Pardeshi S, Shrimal P, Rebello N, Mohite PB. Combined microfluidics and drying processes for the continuous production of micro-/nanoparticles for drug delivery: a review. Drying Technology. 2023;41(10):1533-68. doi: 10.1080/07373937.2023.2167827.

105. Pardeshi S, More M, Patil P, Pardeshi C, Deshmukh P, Mujumdar A. A meticulous overview on drying based (spray, freeze, and spray-freeze) particle engineering approaches for pharmaceutical technologies. Drying Technology. 2021;39(11):1447-91. doi: 10.1080/07373937.2021.1893330.

106. Friesen DT, Shanker R, Crew M, Smithey DT, Curatolo WJ, Nightingale JA. Hydroxypropyl methylcellulose acetate succinate based spray-dried dispersions: an overview. Mol Pharm. 2008;5(6):1003-19. doi: 10.1021/mp8000793, PMID 19040386.

107. Vodak DT, Morgen M. Design and development of HPMCAS-based spray dried dispersions. Adv Deliv Sci Technol. 2014:303-22. doi: 10.1007/978-1-4939-1598-9_9.

108. Verma U, Naik JB, Patil JS, Yadava SK. Screening of process variables to enhance the solubility of famotidine with 2-HydroxyPropyl–β-Cyclodextrin & PVP K-30 by using plackett–burman design approach. Mater Sci Eng C. 2017;77:282-92. doi: 10.1016/j.msec.2017.03.238.

109. Pradhan R, Kim SY, Yong CS, Kim JO. Preparation and characterization of spray dried valsartan loaded eudragit® E PO solid dispersion microparticles. Asian J Pharm Sci. 2016;11(6):744-50. doi: 10.1016/j.ajps.2016.05.002.

110. Patel K, Kevlani V, Shah S. A novel posaconazole oral formulation using spray dried solid dispersion technology: in vitro and in vivo study. Drug Deliv Transl Res. 2024;14(5):1253-76. doi: 10.1007/s13346-023-01461-1, PMID 37952081.

111. Patel H, Palekar S, Patel A, Patel K. Ibrutinib amorphous solid dispersions with enhanced dissolution at colonic pH for the localized treatment of colorectal cancer. Int J Pharm. 2023;641:123056. doi: 10.1016/j.ijpharm.2023.123056, PMID 37207861.

112. Xi Z, Fei Y, Wang Y, Lin Q, Ke Q, Feng G. Solubility improvement of curcumin by crystallization inhibition from polymeric surfactants in amorphous solid dispersions. J Drug Deliv Sci Technol. 2023 May;83:104351. doi: 10.1016/j.jddst.2023.104351.

113. Zaki RM, Alfadhel M, DevanathaDesikan Seshadri V, Albagami F, Alrobaian M, Tawati SM. Fabrication and characterization of orodispersible films loaded with solid dispersion to enhance rosuvastatin calcium bioavailability. Saudi Pharm J. 2023;31(1):135-46. doi: 10.1016/j.jsps.2022.11.012, PMID 36685296.

Published

15-09-2025

How to Cite

BAGADE, PRIYANKA V., et al. “EXPLORING MODERN TECHNIQUES FOR SOLUBILITY ENHANCEMENT IN DRUG FORMULATIONS”. International Journal of Current Pharmaceutical Research, vol. 17, no. 5, Sept. 2025, pp. 31-41, doi:10.22159/ijcpr.2025v17i5.7044.

Issue

Section

Review Article(s)