INFLUENCE OF PHYSICO-CHEMICAL PARAMETERS ON THE FABRICATION OF SILVER NANOPARTICLES USING MARANTA ARUNDINACEA l AND ITS ANTI-MICROBIAL EFFICACY

Authors

  • V. K. ROKHADE P. G. Department of Studies in Botany, Environmental Biology Laboratory, Karnatak University, Dharwad-580003, Karnataka, India
  • T. C. TARANATH P. G. Department of Studies in Botany, Environmental Biology Laboratory, Karnatak University, Dharwad-580003, Karnataka, India

DOI:

https://doi.org/10.22159/ijpps.2025v17i3.28365

Keywords:

Silver nanoparticles, Maranta arundinacea L, Physico-chemical parameters, Antimicrobial activity

Abstract

Objective: To investigate phytosynthesis of silver nanoparticles, factors governing the synthesis of nanoparticles and antibacterial activity of synthesized silver nanoparticles.

Methods: The leaf extract of Maranta arundinacea L. was used for synthesis of silver nanoparticles which was confirmed by changing the colour of reaction mixture from colourless to brown. Synthesized silver nanoparticles were characterized by UV-vis spectroscopy (UV-vis), Fourier Transform Infra Red Spectrophotometer (FTIR), X-ray Diffraction (XRD), Energy dispersive X-ray diffraction (EDX), Atomic Force Microscopy (AFM), High-Resolution Transmission Electron Microscopy (HR-TEM) and testing the antibacterial activity against E. coli, S. typhi, S. aureus and B. polymyxa following well diffusion method.

Results: Silver nanoparticles shows characteristic UV-Vis absorption peak at 406 nm. The influence of physico-chemical parameters was studied and optimized to obtain nanoparticles of diverse sizes. The size of silver nanoparticles ranges from 30 to 90 nm and were found to be spherical in shape with crystalline nature. The synthesized silver nanoparticles showed good antimicrobial activity against multi-drug resistant S. aureus, B. polymyxa, E. coli and Salmonella typhi. Silver nanoparticles show that higher antibacterial activity was observed in Gram negative bacteria than in Gram-positive bacteria. The highest zone of inhibition 7.033±0.033 mm was observed in S. typhi at 250 µl and lowest zone of inhibition 4.100±0.066 mm was seen in B. polymyxa at 250 µl.

Conclusion: Silver nanoparticles synthesized using leaf extract of Maranta arundinacea L. may exhibit reasonable testing antimicrobial activity against some pathogenic microbes.

Downloads

Download data is not yet available.

References

Mubarak Ali D, Thajuddin N, Jeganathan K, Gunasekaran M. Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens. Colloids Surf B Biointerfaces. 2011;85(2):360-5. doi: 10.1016/j.colsurfb.2011.03.009, PMID 21466948.

Sudhakar C, Selvam K, Govarthanan M, Senthilkumar B, Sengottaiyan A, Stalin M. Acorus calamus rhizome extract mediated biosynthesis of silver nanoparticles and their bactericidal activity against human pathogens. J Genet Eng Biotechnol. 2015;13(2):93-9. doi: 10.1016/j.jgeb.2015.10.003.

Suriyakalaa U, Antony JJ, Suganya S, Siva D, Sukirtha R, Kamalakkannan S. Hepatocurative activity of biosynthesized silver nanoparticles fabricated using Andrographis paniculata. Colloids Surf B Biointerfaces. 2013 Feb 1;102:189-94. doi: 10.1016/j.colsurfb.2012.06.039, PMID 23018020.

Gnanadesigan M, Anand M, Ravikumar S, Maruthupandy M, Vijayakumar V, Selvam S. Biosynthesis of silver nanoparticles by using mangrove plant extract and their potential mosquito larvicidal property. Asian Pac J Trop Med. 2011;4(10):799-803. doi: 10.1016/S1995-7645(11)60197-1, PMID 22014736.

Jacob SJ, Finub JS, Narayanan A. Synthesis of silver nanoparticles using Piper longum leaf extracts and its cytotoxic activity against Hep-2 cell line. Colloids Surf B Biointerfaces. 2012 Mar 1;91:212-4. doi: 10.1016/j.colsurfb.2011.11.001, PMID 22119564.

Akhtar MS, Panwar J, Yun YS. Biogenic synthesis of metallic nanoparticles by plant extracts. ACS Sustainable Chem Eng. 2013;1(6):591-602. doi: 10.1021/sc300118u.

Das S, Das J, Samadder A, Bhattacharyya SS, Das D, Khuda Bukhsh AR. Biosynthesized silver nanoparticles by ethanolic extracts of Phytolacca decandra gelsemium sempervirens hydrastis canadensis and thuja occidentalis induce differential cytotoxicity through G2/M arrest in A375 cells. Colloids and Surfaces B: Biointerfaces. 2013 Jan 1;101:325-36. doi: 10.1016/j.colsurfb.2012.07.008.

Swarnalatha C, Rachela S, Ranjan P, Baradwaj P. Evaluation of in vitro antidiabetic activity of Sphaeranthus amaranthoides silver nanoparticles. Int J Nanomat Biostr. 2012;2(3):25-9.

Alivisatos AP. Semiconductor clusters nanocrystals and quantum dots. Science. 1996;271(5251):933-7. doi: 10.1126/science.271.5251.933.

Kelly KL, Coronado E, Zhao LL, Schatz GC. The optical properties of metal nanoparticles: the influence of size shape and dielectric environment. J Phys Chem B. 2003;107(3):668-77. doi: 10.1021/jp026731y.

Sepeur S. Nanotechnology: technical basics and applications. Hannover: Vincentz; 2008.

Christensen L, Vivekanandhan S, Misra M, Kumar Mohanty AK. Biosynthesis of silver nanoparticles using murraya koenigii (curry leaf): an investigation on the effect of broth concentration in reduction mechanism and particle size. Adv Mater Lett. 2011;2(6):429-34. doi: 10.5185/amlett.2011.4256.

Veerasamy R, Xin TZ, Gunasagaran S, Xiang TF, Yang EF, Jeyakumar N. Biosynthesis of silver nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activities. J Saudi Chem Soc. 2011;15(2):113-20. doi: 10.1016/j.jscs.2010.06.004.

Awwad AM, Salem NM, Abdeen A. Biosynthesis of silver nanoparticles using Olea europaea leaves extract and its antibacterial activity. Nanosci Nanotechnol. 2012;2(6):164-70. doi: 10.5923/j.nn.20120206.03.

Gopinath V, Mubarak Ali D, Priyadarshini S, Priyadharsshini NM, Thajuddin N, Velusamy P. Biosynthesis of silver nanoparticles from Tribulus terrestris and its antimicrobial activity: a novel biological approach. Colloids Surf B Biointerfaces. 2012 Aug 1;96:69-74. doi: 10.1016/j.colsurfb.2012.03.023, PMID 22521683.

Vijayakumar M, Priya K, Nancy FT, Noorlidah A, Ahmed AB. Biosynthesis characterisation and anti-bacterial effect of plant-mediated silver nanoparticles using Artemisia nilagirica. Ind Crops Prod. 2013;41:235-40. doi: 10.1016/j.indcrop.2012.04.017.

Bindhu MR, Umadevi M. Synthesis of monodispersed silver nanoparticles using Hibiscus cannabinus leaf extract and its antimicrobial activity. Spectrochim Acta A Mol Biomol Spectrosc. 2013 Jan 15;101:184-90. doi: 10.1016/j.saa.2012.09.031, PMID 23103459.

Niraimathi KL, Sudha V, Lavanya R, Brindha P. Biosynthesis of silver nanoparticles using Alternanthera sessilis (Linn.) extract and their antimicrobial antioxidant activities. Colloids Surf B Biointerfaces. 2013 Feb 1;102:288-91. doi: 10.1016/j.colsurfb.2012.08.041, PMID 23006568.

Patil S, Sivaraj R, Rajiv P, Rajendran V, Seenivasan R. Green synthesis of silver nanoparticles from leaf extract of Aegle marmelos and evaluation of its antibacterial activity. Int J Pharm Pharm Sci. 2015 Jan;7(6):169-73.

Srinivasan S, Indumathi D, Sujatha M, Sujitra K, Muruganathan U. Novel synthesis characterization and antibacterial activity of silver nanoparticles using leaf extract of Melothria maderaspatana (Linn)Cong. Int J Pharm Pharm Sci. 2016;8(6):104-9.

Asha RP, Kavitha S, Shweta RS, Priyanka P, Vrinda A, Vivin TS, Silpa S. Green synthesis and characterization of silver nanoparticles using fresh leaf of Morinda citrifolia and its antimicrobial activity studies. Int J Pharm Pharm Sci. 2015;7(3):459-61.

Nivetha T, Veronica S. Bioprospecting the in vitro antioxidant and anticancer activities of silver nanoparticles synthesized from the leaves of Syzgium samasangense. Int J Pharm Pharm Sci. 2015;7(7):269-74.

Annamalai A, Christina VL, Christina V, Lakshmi PT. Green synthesis and characterisation of Ag NPs using aqueous extract of Phyllanthus maderaspatensis L. J Exp Nanosci. 2014;9(2):113-9. doi: 10.1080/17458080.2011.631041.

Latha M, Sumathi M, Manikandan R, Arumugam A, Prabhu NM. Biocatalytic and antibacterial visualization of green synthesized silver nanoparticles using Hemidesmus indicus. Microb Pathog. 2015 May;82:43-9. doi: 10.1016/j.micpath.2015.03.008, PMID 25797527.

Reshma SK, Anju AJ, Jayanthi S, Ramalingam C, Anita AE. Investigation of biogenic silver nanoparticles green synthesized from Carica papaya. Int J Pharm Pharm Sci. 2015;7(3):107-10.

Rokhade VK, Taranath TC. Biosynthesis of silver nanoparticles using leaf extract of leea indica (burm. f.) merr. and their synergistic antimicrobial activity with antibiotics. Int J Pharm Sci Rev Res. 2016;40(1):211-7.

Kumar KS, Kathireswari P. Biological synthesis of silver nanoparticles (Ag-NPS) by Lawsonia inermis (henna) plant aqueous extract and its antimicrobial activity against human pathogens. Int J Curr Microbiol App Sci. 2016;5(3):926-37. doi: 10.20546/ijcmas.2016.503.107.

Anjum S, Abbasi BH. Thidiazuron enhanced biosynthesis and antimicrobial efficacy of silver nanoparticles via improving phytochemical reducing potential in callus culture of Linum usitatissimum L. Int J Nanomedicine. 2016 Feb 22;11:715-28. doi: 10.2147/IJN.S102359, PMID 26955271.

Elemike EE, Onwudiwe DC, Ekennia AC, Katata Seru L. Biosynthesis characterization and antimicrobial effect of silver nanoparticles obtained using Lavandula intermedia. Res Chem Intermed. 2017;43(3):1383-94. doi: 10.1007/s11164-016-2704-7.

Kero J, Sandeep BV, Sudhakar P. Synthesis characterization and evaluation of the antibacterial activity of Allophylus serratus leaf and leaf derived callus extracts mediated silver nanoparticles. J Nanomat. 2017:4213275-86.

Elizabath A, Mythili S, Sathiavelu A. Synthesis of silver nanoparticles from the medicinal plant Bauhinia acuminata and Biophytum sensitivum a comparative study of its biological activities with plant extract. Int J Appl Pharm. 2017;9(1):22-9. doi: 10.22159/ijap.2017v9i1.16277.

Rokhade VK, Taranath TC. Polygonum glabrum willd. leaf extract mediated green synthesis of silver nanoparticles and their assessment of antimicrobial activity. IOSR JPBS. 2018;13(3):68-75. doi: 10.9790/3008-1303026875.

Nishaa S, Vishnupriya M, Sasikumar J, Hephzibah P, Christabel GK. Antioxidant activity of ethanolic extract of Maranta arundinacea L tuberous rhizomes. Asian J Pharm Clin Res. 2012;5(4):85-8.

Damat. Hypolipidemic effect of cake from butylated arrowroot strach. ARPN J Sci Tech. 2012;2:1007-12.

Shintu PV, Radhakrishnan VV, Mohanan KV. Pharamacognostic standardisation of Maranta arundinacea L. an important ethnomedicine. J Pharm Phytochem. 2015;4(3):242-6.

Rokhade VK, Taranath TC. Synthesis of biogenic silver nanoparticles using sesamum laciniatum klein ex willed. Int J Pharm Sci Rev Res. 2014;43:221-5.

Kumara Swamy M, Sudipta KM, Jayanta K, Balasubramanya S. The green synthesis characterization and evaluation of the biological activities of silver nanoparticles synthesized from Leptadenia reticulata leaf extract. Appl Nanosci. 2015;5(1):73-81. doi: 10.1007/s13204-014-0293-6.

Stenesh J. Foundation of biochemistry. Biochemistry; 1998.

Huang H, Yang Y. Preparation of silver nanoparticles in inorganic clay suspensions. Compos Sci Technol. 2008;68(14):2948-53. doi: 10.1016/j.compscitech.2007.10.003.

Dubey SP, Lahtinen M, Sarkka H, Sillanpaa M. Bioprospective of Sorbus aucuparia leaf extract in development of silver and gold nanocolloids. Colloids and Surfaces B: Biointerfaces. 2010;80(1):26-33. doi: 10.1016/j.colsurfb.2010.05.024.

Kora AJ, Sashidhar RB, Arunachalam J. Gum kondagogu (Cochlospermum gossypium): a template for the green synthesis and stabilization of silver nanoparticles with antibacterial application. Carbohydr Polym. 2010;82(3):670-9. doi: 10.1016/j.carbpol.2010.05.034.

Smitha SL, Nissamudeen KM, Philip D, Gopchandran KG. Studies on surface plasmon resonance and photoluminescence of silver nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc. 2008;71(1):186-90. doi: 10.1016/j.saa.2007.12.002, PMID 18222106.

Mukherjee P, Roy M, Mandal BP, Dey GK, Mukherjee PK, Ghatak J. Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum. Nanotechnology. 2008;19(7):075103. doi: 10.1088/0957-4484/19/7/075103, PMID 21817628.

Ajitha B, Ashok Kumar Reddy Y, Shameer S, Rajesh KM, Suneetha Y, Sreedhara Reddy P. Lantana camara leaf extract mediated silver nanoparticles: antibacterial green catalyst. J Photochem Photobiol B. 2015 Aug;149:84-92. doi: 10.1016/j.jphotobiol.2015.05.020, PMID 26057018.

Das J, Velusamy P. Antibacterial effects of biosynthesized silver nanoparticles using aqueous leaf extract of Rosmarinus officinalis L. Mater Res Bull. 2013;48(11):4531-7. doi: 10.1016/j.materresbull.2013.07.049.

Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D. Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnol. 2007 May 4;18(22):225103-11. doi: 10.1088/0957-4484/18/22/225103.

Feng QL, WU J, Chen GQ, Cui FZ, Kim TN, Kim JO. A mechanistic study of the antibacterial effect of silver ions on escherichia coli and staphylococcus aureus. J Biomed Mater Res. 2000;52(4):662-8. doi: 10.1002/1097-4636(20001215)52:4<662::aid-jbm10>3.0.co;2-3, PMID 11033548.

Matsumura Y, Yoshikata K, Kunisaki SI, Tsuchido T. Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl Environ Microbiol. 2003;69(7):4278-81. doi: 10.1128/AEM.69.7.4278-4281.2003, PMID 12839814.

Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005;16(10):2346-53. doi: 10.1088/0957-4484/16/10/059, PMID 20818017.

Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 2009;27(1):76-83. doi: 10.1016/j.biotechadv.2008.09.002, PMID 18854209.

Published

01-03-2025

How to Cite

ROKHADE, V. K., and T. C. TARANATH. “INFLUENCE OF PHYSICO-CHEMICAL PARAMETERS ON THE FABRICATION OF SILVER NANOPARTICLES USING MARANTA ARUNDINACEA L AND ITS ANTI-MICROBIAL EFFICACY”. International Journal of Pharmacy and Pharmaceutical Sciences, vol. 17, no. 3, Mar. 2025, pp. 1-9, doi:10.22159/ijpps.2025v17i3.28365.

Issue

Section

Original Article(s)