BIOCARRIERS AMPLIFYING ANTI-AGING: CARNOSINE LOADED NANOGEL ON D-GALACTOSE INDUCED SKIN AGING IN RAT MODEL

Authors

  • GOWTHAM SUNDARRAJAN Department of Pharmacology, Kmch College of Pharmacy, Tamil Nadu, India https://orcid.org/0009-0007-3771-1809
  • ARIHARASIVAKUMAR G. Department of Pharmacology, Kmch College of Pharmacy, Tamil Nadu, India
  • PRIYANKA S. Department of Pharmaceutics, Senghundhar College of Pharmacy, Tamil Nadu, India

DOI:

https://doi.org/10.22159/ijpps.2025v17i3.53570

Keywords:

Skin aging, Nanogel, Biocarriers, Carnosine peptide, Hydrosomes, Cosmeceuticals

Abstract

Objective: This study aimed to evaluate the efficacy of biocarriers in amplifying the anti-aging effects of Carnosine-Loaded Nanogel (CAR-HS) on D-Galactose (D-gal) induced skin aging in sprague dawley rats.

Methods: Thirty-four Sprague Dawley rats were divided into six groups: Group I (healthy control, no treatment), Group II (D-GAL positive control), Groups III to V (treated with carnosine-loaded gels), and Group VI (blank hydrosomes (HS­blank)). Evaluation parameters included drug content, encapsulation efficiency, vesicle size, zeta potential, polydispersity index (PDI), in vitro drug release, antioxidant markers, histopathology, and hematological analysis.

Results: Carnosine Hydrosomes (CAR-HS) demonstrated significant de-aging effects. Antioxidant marker levels (Superoxide Dismutase (SOD): 56.8±3.4 U/mg, Catalase (CAT): 85.2±4.1 U/mg, GSH: 12.6±0.8 nmol/mg, MDA: 2.1±0.2 nmol/mg) showed significant improvements (p<0.05) compared to the positive control group (SOD: 32.3±2.7 U/mg, CAT: 49.5±3.2 U/mg, Glutathione (GSH): 6.8±0.6 nmol/mg, Malondialdehyde (MDA): 4.7±0.3 nmol/mg). Histopathological analysis revealed normal epidermal structures and minimal immune cell infiltration in the hydrosomes group, while the positive control exhibited extensive damage. Hematological analysis indicated improved Red Blood Cell (RBC) (6.7±0.4 million/µl) and Hemoglobin (Hb) levels (13.5±0.7 g/dl) in the hydrosomes group compared to the positive control (RBC: 4.8±0.3 million/µl, Hb: 9.2±0.5 g/dl). Spleen histology supported these findings, showing reduced age-related changes.

Conclusion: The present study revealed that anti-aging of CAR-HS holds significant potential for tissue repair, effectively reducing oxidative stress and associated inflammation, likely through mechanisms involving cellular-level damage repair.

Downloads

Download data is not yet available.

References

Thakur R, Batheja P, Kaushik D, Michniak B. Structural and biochemical changes in aging skin and their impact on skin permeability barrier. In: Dayan N, editor. Skin aging handbook: an integrated approach to biochemistry and product development. Norwich (NY): William Andrew Publishing Incorporated; 2008.

Elias JJ. The microscopic structure of the epidermis and its derivatives. In: Barel AO, Paye M, Maibach HI, editors. Handbook of cosmetic science and technology. New York: Marcel Dekker Inc; 2001.

Cohen J. Dermis epidermis and dermal papillae interacting. In: Montagna W, Dobson RL, editors. Advances in biology of skin. Vol. IX, Hair Growth. Oxford: Pergamon; 1969. p. 1-18.

Scully JL. What is a disease? EMBO Rep. 2004;5(7):650-3. doi: 10.1038/sj.embor.7400195, PMID 15229637.

Makrantonaki E, Zouboulis CC, German National Genome Research Network 2. The skin as a mirror of the aging process in the human organism state of the art and results of the aging research in the German National Genome Research Network 2 (NGFN-2). Exp Gerontol. 2007;42(9):879-86. doi: 10.1016/j.exger.2007.07.002, PMID 17689905.

Lener T, Moll PR, Rinnerthaler M, Bauer J, Aberger F, Richter K. Expression profiling of aging in the human skin. Exp Gerontol. 2006;41(4):387-97. doi: 10.1016/j.exger.2006.01.012, PMID 16530368.

Chiang YJ, Difilippantonio MJ, Tessarollo L, Morse HC, Hodes RJ. Exon 1 disruption alters tissue-specific expression of mouse p53 and results in selective development of B cell lymphomas. Plos One. 2012;7(11):e49305. doi: 10.1371/journal.pone.0049305, PMID 23166633.

Kimball AB, Alora Palli MB, Tamura M, Mullins LA, Soh C, Binder RL. Age-induced and photoinduced changes in gene expression profiles in facial skin of caucasian females across six decades of age. J Am Acad Dermatol. 2018;78(1):29–39. doi: 10.1016/j.jaad.2017.09.012.

Laga AC, Murphy GF. The translational basis of human cutaneous photoaging: on models methods and meaning. Am J Pathol. 2009;174(2):357-60. doi: 10.2353/ajpath.2009.081029, PMID 19147830.

Wilson N. Market evolution of topical antiaging treatments. In: Dayan N, editor. Skin aging handbook: an integrated approach to biochemistry and product development. Norwich (NY): William Andrew Publishing Incorporated; 2008.

Klatz R, Goldman R. Stopping the clock. New Canaan (CT): Keats Publishing; 1997.

Ward DM. Cross linkage theory of aging: Part IV. Vitam Res Prod; 2000.

South J. The free radical theory of aging. Int Aging Syst; 2005.

Magalhaes JP. Telomeres Telomerase; 2005.

Lehn JM. Toward self-organization and complex matter. Science. 2002;295(5564):2400-3. doi: 10.1126/science.1071063, PMID 11923524.

Donaldson K, Stone V, Tran CL, Kreyling W, Borm PJ. Nanotoxicology. Occup Environ Med. 2004;61(9):727-8. doi: 10.1136/oem.2004.013243, PMID 15317911.

Oberdorster G, Oberdorster E, Oberdorster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005;113(7):823-39. doi: 10.1289/ehp.7339, PMID 16002369.

Mezei M, Gulasekharam V. Liposomes a selective drug delivery system for the topical route of administration. Lotion dosage form. Life Sci. 1980;26(18):1473-7. doi: 10.1016/0024-3205(80)90268-4, PMID 6893068.

Handjani Vila RM, Ribier A, Rondot B, Vanlerberghie G. Dispersions of lamellar phases of non ionic lipids in cosmetic products. Int J Cosmet Sci. 1979;1(5):303-14. doi: 10.1111/j.1467-2494.1979.tb00224.x, PMID 19467076.

Touitou E, Dayan N, Bergelson L, Godin B, Eliaz M. Ethosomes novel vesicular carriers for enhanced delivery: characterization and skin penetration properties. J Control Release. 2000;65(3):403-18. doi: 10.1016/s0168-3659(99)00222-9, PMID 10699298.

Elsheikh MA, Gaafar PM, Khattab MA, A Helwah MK, Noureldin MH, Abbas H. Dual effects of caffeinated hyalurosomes as a nano cosmeceutical gel counteracting UV induced skin ageing. Int J Pharm X. 2023;5(1):100170. doi: 10.1016/j.ijpx.2023.100170, PMID 36844895.

Aiyalu R, Govindarjan A, Ramasamy A. Formulation and evaluation of topical herbal gel for the treatment of arthritis in animal model. Braz J Pharm Sci. 2016;52(3):493-507. doi: 10.1590/s1984-82502016000300015.

Khazaeli P, Pardakhty A, Shoorabi H. Caffeine loaded niosomes: characterization and in vitro release studies. Drug Deliv. 2007;14(7):447-52. doi: 10.1080/10717540701603597, PMID 17994362.

Kumari A, Rana V, Yadav SK, Kumar V. Nanotechnology as a powerful tool in plant sciences: recent developments challenges and perspectives. Plant Nano Biol. 2023 Aug;5:100046. doi: 10.1016/j.plana.2023.100046.

Ahmed N, Sohail MF, Khurshid Z, Ammar A, Saeed AM, Shazia F. Synthesis characterization and in vivo distribution of 99mTc radiolabelled docetaxel loaded folic acid thiolated chitosan enveloped liposomes. Bio Nano Science. 2023;13(1):134-44. doi: 10.1007/s12668-022-01053-2.

Kumari A, Rana V, Yadav SK, Kumar V. Nanotechnology as a powerful tool in plant sciences: recent developments challenges and perspectives. Plant Nano Biol. 2023 Aug;5:100046. doi: 10.1016/j.plana.2023.100046.

Khazaeli P, Pardakhty A, Shoorabi H. Caffeine loaded niosomes: characterization and in vitro release studies. Drug Deliv. 2007;14(7):447-52. doi: 10.1080/10717540701603597, PMID 17994362.

Ahmed N, Sohail MF, Khurshid Z, Ammar A, Saeed AM, Shazia F. Synthesis characterization and in vivo distribution of 99mtc radiolabelled docetaxel loaded folic acid thiolated chitosan enveloped liposomes. Bio Nano Science. 2023;13(1):134-44. doi: 10.1007/s12668-022-01053-2.

Salunkhe SS, Bhatia NM, Pokharkar VB, Thorat JD, Bhatia MS. Topical delivery of idebenone using nanostructured lipid carriers: evaluations of sun protection and anti-oxidant effects. J Pharm Investig. 2013;43(4):287-303. doi: 10.1007/s40005-013-0079-y.

Ghanbarzadeh B, Babazadeh A, Hamishehkar H. Nano phytosome as a potential food-grade delivery system. Food Bioscience. 2016 Sep 1;15:126-35. doi: 10.1016/j.fbio.2016.07.006.

Abd El Alim SH, Kassem AA, Basha M, Salama A. Comparative study of liposomes ethosomes and transfersomes as carriers for enhancing the transdermal delivery of diflunisal: in vitro and in vivo evaluation. Int J Pharm. 2019 May 30;563:293-303. doi: 10.1016/j.ijpharm.2019.04.001, PMID 30951860.

Dragovic RA, Gardiner C, Brooks AS, Tannetta DS, Ferguson DJ, Hole P. Sizing and phenotyping of cellular vesicles using nanoparticle tracking analysis. Nanomedicine. 2011;7(6):780-8. doi: 10.1016/j.nano.2011.04.003, PMID 21601655.

Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani FH, Javanmard R, Dokhani A. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 2018;10(2):57. doi: 10.3390/pharmaceutics10020057, PMID 29783687.

Rabbani M, Pezeshki A, Ahmadi R, Mohammadi M, Tabibiazar M, Ahmadzadeh Nobari Azar F. Phytosomal nanocarriers for encapsulation and delivery of resveratrol preparation characterization and application in mayonnaise. LWT. 2021;151:2021.112093. doi: 10.1016/j.lwt.2021.112093.

Zhang W, Taheri Ledari R, Ganjali F, Mirmohammadi SS, Qazi FS, Saeidirad M. Effects of morphology and size of nanoscale drug carriers on cellular uptake and internalization process: a review. RSC Adv. 2022;13(1):80-114. doi: 10.1039/d2ra06888e, PMID 36605676.

Touitou E, Dayan N, Bergelson L, Godin B, Eliaz M. Ethosomes novel vesicular carriers for enhanced delivery: characterization and skin penetration properties. J Control Release. 2000 Apr 3;65(3):403-18. doi: 10.1016/s0168-3659(99)00222-9, PMID 10699298.

Vovesna A, Zhigunov A, Balouch M, Zbytovska J. Ceramide liposomes for skin barrier recovery: a novel formulation based on natural skin lipids. Int J Pharm. 2021 Mar 1;596:120264. doi: 10.1016/j.ijpharm.2021.120264, PMID 33486027.

LU H, Zhang S, Wang J, Chen Q. A review on polymer and lipid based nanocarriers and its application to nano pharmaceutical and food based systems. Front Nutr. 2021 Dec 1;8:783831. doi: 10.3389/fnut.2021.783831, PMID 34926557, PMCID PMC8671830.

Parameshwaran K, Irwin MH, Steliou K, Pinkert CA. D-galactose effectiveness in modeling aging and therapeutic antioxidant treatment in mice. Rejuvenation Res. 2010;13(6):729-35. doi: 10.1089/rej.2010.1020, PMID 21204654.

Jarmila P, Veronika M, Peter M. Advances in the delivery of anticancer drugs by nanoparticles and chitosan based nanoparticles. Int J Pharm X. 2024 Aug 28;8:100281. doi: 10.1016/j.ijpx.2024.100281, PMID 39297017.

Nasrullah MZ. Caffeic acid phenethyl ester loaded PEG-PLGA nanoparticles enhance wound healing in diabetic rats. Antioxidants (Basel). 2022 Dec 27;12(1):60. doi: 10.3390/antiox12010060, PMID 36670922, PMCID PMC9854644.

MU J, LI C, Shi Y, Liu G, Zou J, Zhang DY. Protective effect of platinum nano-antioxidant and nitric oxide against hepatic ischemia reperfusion injury. Nat Commun. 2022 May 6;13(1):2513. doi: 10.1038/s41467-022-29772-w, PMID 35523769, PMCID PMC9076604.

Published

01-03-2025

How to Cite

SUNDARRAJAN, GOWTHAM, et al. “BIOCARRIERS AMPLIFYING ANTI-AGING: CARNOSINE LOADED NANOGEL ON D-GALACTOSE INDUCED SKIN AGING IN RAT MODEL”. International Journal of Pharmacy and Pharmaceutical Sciences, vol. 17, no. 3, Mar. 2025, pp. 36-44, doi:10.22159/ijpps.2025v17i3.53570.

Issue

Section

Original Article(s)

Similar Articles

<< < 3 4 5 6 7 > >> 

You may also start an advanced similarity search for this article.