ROLE OF PLANT-BASED FLAVONOIDS AS DRUG CANDIDATES FOR INFLAMMATORY BOWEL DISEASE-A SHORT REVIEW

Authors

  • SAMRITI FAUJDAR Department of Pharmacy, Banasthali Vidyapith, Rajasthan, India https://orcid.org/0009-0005-8405-283X
  • PRABHA HULLATTI Department of Pharmacy, Banasthali Vidyapith, Rajasthan, India
  • NABARUN MUKHOPADHYAY Department of Chemical Sciences (Natural Products), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India https://orcid.org/0000-0002-8851-9485
  • A. P. BASAVARAJAPPA Department of Pharmacology, Bapuji Pharmacy College, Davangere, Karnataka, India https://orcid.org/0009-0006-0377-9082
  • SARASWATI PATEL Department of Pharmacology, Saveetha College of Pharmacy, Thandalam, Chennai, Tamil Nadu, India https://orcid.org/0000-0002-8500-2421

DOI:

https://doi.org/10.22159/ijpps.2025v17i6.53851

Keywords:

Plant-based flavonoids, Phytoconstituents, Drugs, Inflammatory bowel disease

Abstract

Inflammatory Bowel Disease (IBD) is a chronic disorder caused due to several factors. Out of these, inflammation is one of the major causative factors, and several inflammatory markers, like pro-inflammatory cytokines enzymes play an essential role in the progression and development of IBD. The existing therapies against IBD have severe adverse effects, and drug resistance can also occur. Hence, novel therapies against IBD need to be developed for the treatment and prevention of IBD. Natural products, specifically flavonoids, can be an excellent alternative to get better therapeutic efficacy. Hence, flavonoids can be utilized more bitterly as a drug candidate for IBD. Our review work mainly discussed the potential flavonoids and their role in treating IBD and also focussed on it by inhibiting inflammatory markers.

Downloads

Download data is not yet available.

References

Park SC, Jeen YT. Genetic studies of inflammatory bowel disease focusing on Asian patients. Cells. 2019 May 1;8(5):404. doi: 10.3390/cells8050404, PMID 31052430.

Martin DA, Bolling BW. A review of the efficacy of dietary polyphenols in experimental models of inflammatory bowel diseases. Food Funct. 2015 May 13;6(6):1773-86. doi: 10.1039/c5fo00202h, PMID 25986932.

Duan L, Cheng S, LI L, Liu Y, Wang D, Liu G. Natural anti-inflammatory compounds as drug candidates for inflammatory bowel disease. Front Pharmacol. 2021 Jul 14;12:684486. doi: 10.3389/fphar.2021.684486, PMID 34335253.

Fakhoury M, Negrulj R, Mooranian A, Al Salami H. Inflammatory bowel disease: clinical aspects and treatments. J Inflamm Res. 2014 Jun 23;7:113-20. doi: 10.2147/JIR.S65979, PMID 25075198.

Rosen MJ, Dhawan A, Saeed SA. Inflammatory bowel disease in children and adolescents. JAMA Pediatr. 2015 Nov 1;169(11):1053-60. doi: 10.1001/jamapediatrics.2015.1982, PMID 26414706.

Lee D, Albenberg L, Compher C, Baldassano R, Piccoli D, Lewis JD. Diet in the pathogenesis and treatment of inflammatory bowel diseases. Gastroenterology. 2015 Jan 15;148(6):1087-106. doi: 10.1053/j.gastro.2015.01.007, PMID 25597840.

Kennedy NA, Heap GA, Green HD, Hamilton B, Bewshea C, Walker GJ. Predictors of anti-TNF treatment failure in anti-TNF-naive patients with active luminal crohns disease: a prospective multicentre cohort study. Lancet Gastroenterol Hepatol. 2019 Feb 27;4(5):341-53. doi: 10.1016/S2468-1253(19)30012-3, PMID 30824404.

Bhakta A, Tafen M, Glotzer O, Ata A, Chismark AD, Valerian BT. Increased incidence of surgical site infection in IBD patients. Dis Colon Rectum. 2016 Apr;59(4):316-22. doi: 10.1097/DCR.0000000000000550, PMID 26953990.

Hounsome N, Hounsome B, Tomos D, Edwards Jones GE. Plant metabolites and nutritional quality of vegetables. J Food Sci. 2008 Apr 2;73(4):R48-65. doi: 10.1111/j.1750-3841.2008.00716.x, PMID 18460139.

Manach C, Scalbert A, Morand C, Remesy C, Jimenez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr. 2004 May 1;79(5):727-47. doi: 10.1093/ajcn/79.5.727, PMID 15113710.

Han X, Shen T, Lou H. Dietary polyphenols and their biological significance. Int J Mol Sci. 2007 Sep 12;8(9):950-88. doi: 10.3390/i8090950.

Huang WY, Cai YZ, Zhang Y. Natural phenolic compounds from medicinal herbs and dietary plants: potential use for cancer prevention. Nutr Cancer. 2010;62(1):1-20. doi: 10.1080/01635580903191585, PMID 20043255.

Wirtz S, Neurath MF. Mouse models of inflammatory bowel disease. Adv Drug Deliv Rev. 2007 Sep 30;59(11):1073-83. doi: 10.1016/j.addr.2007.07.003, PMID 17825455.

Gao X, Feng X, Hou T, Huang W, MA Z, Zhang D. The roles of flavonoids in the treatment of inflammatory bowel disease and extra intestinal manifestations: a review. Food Biosci. 2024 Nov 8;62:105431. doi: 10.1016/j.fbio.2024.105431.

Deshmukh CD. A review on inflammatory bowel disease. Asian J Pharm Clin Res. 2023 Jun 7;16(6):11-4. doi: 10.22159/ajpcr.2023.v16i6.47124.

Tao F, Qian C, Guo W, Luo Q, XU Q, Sun Y. Inhibition of Th1/Th17 responses via suppression of STAT1 and STAT3 activation contributes to the amelioration of murine experimental colitis by a natural flavonoid glucoside icariin. Biochem Pharmacol. 2013;85(6):798-807. doi: 10.1016/j.bcp.2012.12.002, PMID 23261528.

Caddeo C, Nacher A, Diez Sales O, Merino Sanjuan M, Fadda AM, Manconi M. Chitosan xanthan gum microparticle based oral tablet for colon targeted and sustained delivery of quercetin. J Microencapsul. 2014 Jun 6;31(7):694-9. doi: 10.3109/02652048.2014.913726, PMID 24903450.

JU S, GE Y, LI P, Tian X, Wang H, Zheng X. Dietary quercetin ameliorates experimental colitis in mouse by remodeling the function of colonic macrophages via a heme oxygenase-1-dependent pathway. Cell Cycle. 2018 Jan 2;17(1):53-63. doi: 10.1080/15384101.2017.1387701, PMID 28976231.

Dodda D, Chhajed R, Mishra J, Padhy M. Targeting oxidative stress attenuates trinitrobenzene sulphonic acid induced inflammatory bowel disease like symptoms in rats: role of quercetin. Indian J Pharmacol. 2014 Jun;46(3):286-91. doi: 10.4103/0253-7613.132160, PMID 24987175.

Dodda D, Chhajed R, Mishra J. Protective effect of quercetinagainst acetic acid induced inflammatory bowel disease (IBD) like symptoms in rats: possible morphological and biochemical alterations. Pharmacol Rep. 2014 Feb 19;66(1):169-73. doi: 10.1016/j.pharep.2013.08.013.

Diez Echave P, Ruiz Malagon AJ, Molina Tijeras JA, Hidalgo Garcia L, Vezza T, Cenis Cifuentes L. Silk fibroin nanoparticles enhance quercetin immunomodulatory properties in DSS-induced mouse colitis. Int J Pharm. 2021;606:120935. doi: 10.1016/j.ijpharm.2021.120935, PMID 34310954.

Dong Y, Lei J, Zhang B. Dietary quercetin alleviated DSS-induced colitis in mice through several possible pathways by transcriptome analysis. Curr Pharm Biotechnol. 2020;21(15):1666-73. doi: 10.2174/1389201021666200711152726, PMID 32651963.

Yan B, LI X, Zhou L, Qiao Y, WU J, Zha L. Inhibition of IRAK 1/4 alleviates colitis by inhibiting TLR4/ NF-κB pathway and protecting the intestinal barrier. Bosn J Basic Med Sci. 2022 Oct 23;22(6):872-81. doi: 10.17305/bjbms.2022.7348, PMID 35699749.

Semwal DK, Semwal RB, Combrinck S, Viljoen A. Myricetin: a dietary molecule with diverse biological activities. Nutrients. 2016 Feb 16;8(2):90. doi: 10.3390/nu8020090, PMID 26891321.

Jones JR, Lebar MD, Jinwal UK, Abisambra JF, Koren J, Blair L. The diarylheptanoid (+)-aR,11S-myricanol and two flavones from bayberry (Myrica cerifera) destabilize the microtubule associated protein tau. J Nat Prod. 2011 Jan 28;74(1):38-44. doi: 10.1021/np100572z, PMID 21141876.

Wang L, WU H, Yang F, Dong W. The protective effects of myricetin against cardiovascular disease. J Nutr Sci Vitaminol (Tokyo). 2019;65(6):470-6. doi: 10.3177/jnsv.65.470, PMID 31902859.

QU X, LI Q, Song Y, Xue A, Liu Y, QI D. Potential of myricetin to restore the immune balance in dextran sulfate sodium induced acute murine ulcerative colitis. J Pharm Pharmacol. 2020 Jan 1;72(1):92-100. doi: 10.1111/jphp.13197, PMID 31724745.

CI X, Chu X, Wei M, Yang X, Cai Q, Deng X. Different effects of farrerol on an OVA-induced allergic asthma and LPS-induced acute lung injury. Plos One. 2012;7(4):e34634. doi: 10.1371/journal.pone.0034634, PMID 22563373.

Nabavi SF, Khan H, D Onofrio G, Samec D, Shirooie S, Dehpour AR. Apigenin as neuroprotective agent: of mice and men. Pharmacol Res. 2018 Feb;128:359-65. doi: 10.1016/j.phrs.2017.10.008, PMID 29055745.

YU T, Xiong Y, Luu S, You X, LI B, Xia J. The shared KEGG pathways between icariin targeted genes and osteoporosis. Aging. 2020 May 7;12(9):8191-201. doi: 10.18632/aging.103133, PMID 32380477.

Marquez Flores YK, Villegas I, Cardeno A, Rosillo MA, Alarcon-de-la-Lastra C. Apigenin supplementation protects the development of dextran sulfate sodium induced murine experimental colitis by inhibiting canonical and non canonical inflammasome signaling pathways. J Nutr Biochem. 2016;30:143-52. doi: 10.1016/j.jnutbio.2015.12.002, PMID 27012631.

Aziz N, Kim MY, Cho JY. Anti-inflammatory effects of luteolin: a review of in vitro-in vivo and in silico studies. J Ethnopharmacol. 2018 Oct 28;225:342-58. doi: 10.1016/j.jep.2018.05.019, PMID 29801717.

Imran M, Salehi B, Sharifi Rad J, Aslam Gondal T, Saeed F, Imran A. Kaempferol: a key emphasis to its anticancer potential. Molecules. 2019 Jun 19;24(12):2277. doi: 10.3390/molecules24122277, PMID 31248102.

Karrasch T, Kim JS, Jang BI, Jobin C. The flavonoid luteolin worsens chemical induced colitis in NF-κBEGFP transgenic mice through blockade of NF-κB-dependent protective molecules. Plos One. 2007 Jul 4;2(7):e596. doi: 10.1371/journal.pone.0000596.

Nunes C, Almeida L, Barbosa RM, Laranjinha J. Luteolin suppresses the JAK/STAT pathway in a cellular model of intestinal inflammation. Food Funct. 2017;8(1):387-96. doi: 10.1039/c6fo01529h, PMID 28067377.

Zaidun NH, Thent ZC, Latiff AA. Combating oxidative stress disorders with citrus flavonoid: naringenin. Life Sci. 2018 Sep 1;208:111-22. doi: 10.1016/j.lfs.2018.07.017, PMID 30021118.

Zeng W, Jin L, Zhang F, Zhang C, Liang W. Naringenin as a potential immunomodulator in therapeutics. Pharmacol Res. 2018 Sep;135:122-6. doi: 10.1016/j.phrs.2018.08.002, PMID 30081177.

Pinho Ribeiro FA, Zarpelon AC, Fattori V, Manchope MF, Mizokami SS, Casagrande R. Naringenin reduces inflammatory pain in mice. Neuropharmacology. 2016 Jun;105:508-19. doi: 10.1016/j.neuropharm.2016.02.019, PMID 26907804.

Dou W, Zhang J, Sun A, Zhang E, Ding L, Mukherjee S. Protective effect of naringenin against experimental colitis via suppression of toll-like receptor 4/NF-κB signalling. Br J Nutr. 2013;110(4):599-608. doi: 10.1017/S0007114512005594, PMID 23506745.

Al Rejaie SS, Abuohashish HM, Al Enazi MM, Al Assaf AH, Parmar MY, Ahmed MM. Protective effect of naringenin on acetic acid induced ulcerative colitis in rats. World J Gastroenterol. 2013 Sep 14;19(34):5633-44. doi: 10.3748/wjg.v19.i34.5633, PMID 24039355.

Ran X, LI Y, Chen G, FU S, HE D, Huang B. Farrerol ameliorates TNBS-induced colonic inflammation by inhibiting ERK1/2, JNK1/2, and NF-κB signaling pathway. Int J Mol Sci. 2018;19(7):2037. doi: 10.3390/ijms19072037, PMID 30011811.

Azuma T, Shigeshiro M, Kodama M, Tanabe S, Suzuki T. Supplemental naringenin prevents intestinal barrier defects and inflammation in colitic mice. J Nutr. 2013 Jun;143(6):827-34. doi: 10.3945/jn.113.174508, PMID 23596159.

Liu D, WU J, Xie H, Liu M, Takau I, Zhang H, Xiong Y, Xia C. Inhibitory effect of hesperetin and naringenin on Human UDP-glucuronosyl transferase enzymes: implications for herb drug interactions. Biol Pharm Bull. 2016;39(12):2052-9. doi: 10.1248/bpb.b16-00581.

Gonzalez Alfonso JL, Miguez N, Padilla JD, Leemans L, Poveda A, Jimnez Barbero J. Optimization of regioselective α-glucosylation of hesperetin catalyzed by cyclodextrin glucanotransferase. Molecules. 2018 Nov 5;23(11):2885. doi: 10.3390/molecules23112885, PMID 30400664.

Shirzad M, Heidarian E, Beshkar P, Gholami Arjenaki M. Biological effects of hesperetin on interleukin-6/phosphorylated signal transducer and activator of transcription 3 pathway signaling in prostate cancer PC3 cells. Pharmacogn Res. 2017;9(2):188-94. doi: 10.4103/0974-8490.204655, PMID 28539744.

Elhennawy MG, Abdelaleem EA, Zaki AA, Mohamed WR. Cinnamaldehyde and hesperetin attenuate TNBS induced ulcerative colitis in rats through modulation of the JAk2/STAT3/SOCS3 pathway. J Biochem Mol Toxicol. 2021 May;35(5):e22730. doi: 10.1002/jbt.22730, PMID 33522063.

Zhang J, Lei H, HU X, Dong W. Hesperetin ameliorates DSS-induced colitis by maintaining the epithelial barrier via blocking RIPK3/MLKL necroptosis signaling. Eur J Pharmacol. 2020 Apr 15;873:172992. doi: 10.1016/j.ejphar.2020.172992, PMID 32035144.

Polat FR, Karaboga I, Polat MS, Erboga Z, Yilmaz A, Guzel S. Effect of hesperetin on inflammatory and oxidative status in trinitrobenzene sulfonic acid induced experimental colitis model. Cell Mol Biol (Noisy-le-grand). 2018 Aug 30;64(11):58-65. doi: 10.14715/cmb/2018.64.11.11, PMID 30213290.

Jaakola L. New insights into the regulation of anthocyanin biosynthesis in fruits. Trends Plant Sci. 2013;18(9):477-83. doi: 10.1016/j.tplants.2013.06.003, PMID 23870661.

Sui X, Zhang Y, Zhou W. Bread fortified with anthocyanin richextract from black rice as nutraceutical sources: its quality attributes and in vitro digestibility. Food Chem. 2016 Apr 1;196:910-6. doi: 10.1016/j.foodchem.2015.09.113.

Silva S, Costa EM, Calhau C, Morais RM, Pintado ME. Anthocyanin extraction from plant tissues: a review. Crit Rev Food Sci Nutr. 2017 Sep 22;57(14):3072-83. doi: 10.1080/10408398.2015.1087963, PMID 26529399.

WU LH, XU ZL, Dong D, HE SA, YU H. Protective effect of anthocyanins extract from blueberry on TNBS induced IBD model of mice. Evid Based Complement Alternat Med. 2011 Apr 14;2011:525462. doi: 10.1093/ecam/neq040, PMID 21785630.

Piberger H, Oehme A, Hofmann C, Dreiseitel A, Sand PG, Obermeier F. Bilberries and their anthocyanins ameliorate experimental colitis. Mol Nutr Food Res. 2011 Nov;55(11):1724-9. doi: 10.1002/mnfr.201100380, PMID 21957076.

Zhao L, Zhang Y, Liu G, Hao S, Wang C, Wang Y. Black rice anthocyanin rich extract and rosmarinic acid alone and in combination protect against DSS induced colitis in mice. Food Funct. 2018 Apr 18;9(5):2796-808. doi: 10.1039/c7fo01490b, PMID 29691532.

Zhang J, Lei H, HU X, Dong W. Hesperetin ameliorates DSS induced colitis by maintaining the epithelial barrier via blocking RIPK3/MLKL necroptosis signaling. Eur J Pharmacol. 2020 Apr 15;873:172992. doi: 10.1016/j.ejphar.2020.172992, PMID 32035144.

Abron JD, Singh NP, Price RL, Nagarkatti M, Nagarkatti PS, Singh UP. Genistein induces macrophage polarization and systemic cytokine to ameliorate experimental colitis. Plos One. 2018 Jul 18;13(7):e0199631. doi: 10.1371/journal.pone.0199631, PMID 30024891.

Fathima A, Rao JR. Selective toxicity of catechin a natural flavonoid towards bacteria. Appl Microbiol Biotechnol. 2016 Apr 6;100(14):6395-402. doi: 10.1007/s00253-016-7492-x, PMID 27052380.

Martinez Leal J, Valenzuela Suarez L, Jayabalan R, Huerta Oros J, Escalante-Aburto A. A review on health benefits of kombucha nutritional compounds and metabolites. CyTA J Food. 2018 Feb 12;16(1):390-9. doi: 10.1080/19476337.2017.1410499.

Cardoso RR, Neto RO, Dos Santos D, Almeida CT, DO Nascimento TP, Pressete CG, Azevedo L. Kombuchas from green and black teas have different phenolic profile which impacts their antioxidant capacities antibacterial and antiproliferative activities. Food Res Int. 2020 Feb;128:108782. doi: 10.1016/j.foodres.2019.108782, PMID 31955755.

DU Y, Ding H, Vanarsa K, Soomro S, Baig S, Hicks J. Low dose epigallocatechin gallate alleviates experimental colitis by subduing inflammatory cells and cytokines and improving intestinal permeability. Nutrients. 2019 Jul 29;11(8):1743. doi: 10.3390/nu11081743, PMID 31362373.

Mascia C, Maina M, Chiarpotto E, Leonarduzzi G, Poli G, Biasi F. Proinflammatory effect of cholesterol and its oxidation products on CaCo-2 human enterocyte like cells: effective protection by epigallocatechin-3-gallate. Free Radic Biol Med. 2010 Dec;49(12):2049-57. doi: 10.1016/j.freeradbiomed.2010.09.033, PMID 20923702.

Sergent T, Piront N, Meurice J, Toussaint O, Schneider YJ. Anti-inflammatory effects of dietary phenolic compounds in an in vitro model of inflamed human intestinal epithelium. Chem Biol Interact 2010;188(3):659-67. doi: 10.1016/j.cbi.2010.08.007, PMID 20816778.

Louis Jean S. Clinical outcomes of flavonoids for immunomodulation in inflammatory bowel disease: a narrative review. Ann Gastroenterol. 2024 Jun 14;37(4):392-402. doi: 10.20524/aog.2024.0893, PMID 38974082.

LI M, Liu Y, Weigmann B. Biodegradable polymeric nanoparticles loaded with flavonoids: a promising therapy for inflammatory bowel disease. Int J Mol Sci. 2023 Feb 23;24(5):4454. doi: 10.3390/ijms24054454, PMID 36901885.

Kandemir FM, Yıldırım S, Kucukler S, Caglayan C, Darendelioglu E, Dortbudak MB. Protective effects of morin against acrylamide induced hepatotoxicity and nephrotoxicity: a multi biomarker approach. Food Chem Toxicol. 2020 Apr;138:111190. doi: 10.1016/j.fct.2020.111190, PMID 32068001.

Tang Z, Zhang Q. The potential toxic side effects of flavonoids. Biocell. 2022 Oct 20;46(2):357-66. doi: 10.32604/biocell.2022.015958.

Published

01-06-2025

How to Cite

FAUJDAR, SAMRITI, et al. “ROLE OF PLANT-BASED FLAVONOIDS AS DRUG CANDIDATES FOR INFLAMMATORY BOWEL DISEASE-A SHORT REVIEW”. International Journal of Pharmacy and Pharmaceutical Sciences, vol. 17, no. 06, June 2025, pp. 1-6, doi:10.22159/ijpps.2025v17i6.53851.

Issue

Section

Review Article(s)

Similar Articles

<< < 3 4 5 6 7 > >> 

You may also start an advanced similarity search for this article.