PHARMACEUTICAL POLYMERS IN DRUG DELIVERY: AN OVERVIEW
DOI:
https://doi.org/10.22159/ijpps.2025v17i7.54498Keywords:
Pharmaceutical polymers, Biodegradable polymers, Polysaccharides, Drug deliveryAbstract
Polymers have significantly assisted to the advancement of the drug delivery devices by adjusting the drug release at consistent rates over extended durations, facilitating cyclic administration, and targeting to the desired site. Polymers are frequently utilized as taste-masking, stabilizing, and proactive agents. The key characteristics that render polymers appealing options for drug delivery include their safety, effectiveness, hydrophilicity, non-immunogenicity, biological inertness, favourable pharmaceutical kinetics, and the presence of functional groups that facilitate covalent crosslinking, targeting ligands, or copolymer formation. Natural polymers that are more commonly used, like arginine, collagen, chitosan, and carrageenans are discussed for their possible application in polymeric drug delivery systems. Synthetic polymers exhibit elevated immunogenicity, limiting their viability for prolonged application. Non-biodegradable polymers necessitate subsequent removal post-drug release at the intended site. Progress in polymer science has made possible in the emergence of various innovative drug delivery systems, including hydrogels, liposomes, nanoparticles, micelles, patches, implants, and others. Biodegradable polymers have garnered considerable interest because they can degrade into non-toxic monomers, enabling sustained drug release from biodegradable polymer-based controlled-release devices. This review delves into the commonly used synthetic and natural polymers that are used in drug delivery, consideration of selection of polymers and recent advancement in polymer research.
Downloads
References
Kumar N, Pahuja S, Sharma R. Pharmaceutical polymers a review. Int J Drug Deliv Technol. 2019;9(1):27-33. doi: 10.25258/ijddt.9.1.5.
Bejenaru C, Radu A, Segneanu AE, Bita A, Ciocilteu MV, Mogoşanu GD. Pharmaceutical applications of biomass polymers: review of current research and perspectives. Polymers. 2024;16(9):1182. doi: 10.3390/polym16091182, PMID 38732651.
Pramanik S, Chakraborty P. Interpenetrating polymer network in drug delivery formulations: revisited. Asian J Pharm Clin Res. 2019;12(6):5-11. doi: 10.22159/ajpcr.2019.v12i6.33117.
Parameshwar K, Sahoo SK. A review of merely polymeric nanoparticles in recent drug delivery system. Asian J Pharm Clin Res. 2022;15(4):4-12. doi: 10.22159/ajpcr.2022.v15i4.43239.
Nagam SP, Jyothi AN, Poojitha J, Aruna S, Nadendla RR. A comprehensive review on hydrogels. Int J Curr Pharm Res. 2016;8(1):19-23.
Zorah M, Mudhafar M, Naser HA, Mustapa IR. The promises of the potential uses of polymer biomaterials in biomedical applications and their challenges. Int J App Pharm. 2023;15(4):27-36. doi: 10.22159/ijap.2023v15i4.48119.
Pillai O, Panchagnula R. Polymers in drug delivery. Curr Opin Chem Biol. 2001;5(4):447-51. doi: 10.1016/s1367-5931(00)00227-1, PMID 11470609.
Bustos Terrones YA. A review of the strategic use of sodium alginate polymer in the immobilization of microorganisms for water recycling. Polymers. 2024;16(6):788. doi: 10.3390/polym16060788, PMID 38543393.
Konwarh R, Singh AP, Varadarajan V, Cho WC. Harnessing alginate based nanocomposites as nucleic acid/gene delivery platforms to address diverse biomedical issues: a progressive review. Carbohydrate Polymer Technologies and Applications. 2024 Jun;7:100404. doi: 10.1016/j.carpta.2023.100404.
Duong T, Vivero Lopez M, Ardao I, Alvarez Lorenzo C, Forgacs A, Kalmar J. Alginate aerogels by spray gelation for enhanced pulmonary delivery and solubilization of beclomethasone dipropionate. Chem Eng J. 2024 Apr 1;485:149849. doi: 10.1016/j.cej.2024.149849.
Sk Mosiur R, Dutta G, Biswas R, Sugumaran A, M Salem M, Gamal M. Succinyl curcumin conjugated chitosan polymer prodrug nanomicelles: a potential treatment for type-II diabetes in diabetic BALB/c mice. Acta Chim Slov. 2024;71(2):421-35. doi: 10.17344/acsi.2024.8658, PMID 38919100.
Parambil A, Maanvizhi S, Kuttalingam A, Chitra V. Spray-dried chitosan microspheres for sustained delivery of trifluoperazine hydrochloride: formulation and in vitro evaluation. Int J App Pharm. 2023;15(3):200-7. doi: 10.22159/ijap.2023v15i3.47222.
Biswas R, Mondal S, Ansari MA, Sarkar T, Condiuc IP, Trifas G. Chitosan and its derivatives as nanocarriers for drug delivery. Molecules. 2025;30(6):1297. doi: 10.3390/molecules30061297, PMID 40142072.
Lucero MJ, Ferris C, Sanchez Gutierrez CA, Jimenez Castellanos MR, De Paz MV. Novel aqueous chitosan-based dispersions as efficient drug delivery systems for topical use. Rheological textural and release studies. Carbohydr Polym. 2016 Oct 20;151:692-9. doi: 10.1016/j.carbpol.2016.06.006, PMID 27474615.
Cheng C, Chen S, Su J, Zhu M, Zhou M, Chen T. Recent advances in carrageenan-based films for food packaging applications. Front Nutr. 2022 Sep 9;9:1004588. doi: 10.3389/fnut.2022.1004588, PMID 36159449.
James S, Moawad M. Study on composite hydrogel mixture of calcium alginate/gelatin/kappa carrageenan for 3D bioprinting. Bioprinting. 2023;31:17:e00273. doi: 10.1016/j.bprint.2023.e00273.
Vlachopoulos A, Karlioti G, Balla E, Daniilidis V, Kalamas T, Stefanidou M. Poly(lactic acid) based microparticles for drug delivery applications: an overview of recent advances. Pharmaceutics. 2022;14(2):359. doi: 10.3390/pharmaceutics14020359, PMID 35214091.
Fattahi F, Zamani T. Synthesis of polylactic acid nanoparticles for the novel biomedical applications: a scientific perspective. Nanochem Res. 2020 Jan;5(1):1-13. doi: 10.22036/ncr.2020.01.001.
Nifantev IE, Tavtorkin AN, Shlyakhtin AV, Ivchenko PV. Chemical features of the synthesis degradation molding and performance of poly(lactic-co-glycolic) acid (PLGA) and PLGA-based articles. Eur Polym J. 2024 Jul 24;215:1-33. doi: 10.1016/j.eurpolymj.2024.113250.
Little A, Ma S, Haddleton DM, Tan B, Sun Z, Wan C. Synthesis and characterization of high glycolic acid content poly(glycolic acid-co-butylene adipate-co-butylene terephthalate) and poly(glycolic acid-co-butylene succinate) copolymers with improved elasticity. ACS Omega. 2023;8(41):38658-67. doi: 10.1021/acsomega.3c05932, PMID 37867663.
Gentile P, Chiono V, Carmagnola I, Hatton PV. An overview of poly(lactic-co-glycolic) acid (PLGA) based biomaterials for bone tissue engineering. Int J Mol Sci. 2014;15(3):3640-59. doi: 10.3390/ijms15033640, PMID 24590126.
Lu G, Li B, Lin L, Li X, Ban J. Mechanical strength affecting the penetration in microneedles and PLGA nanoparticle assisted drug delivery: importance of preparation and formulation. Biomed Pharmacother. 2024 Apr;173:116339. doi: 10.1016/j.biopha.2024.116339, PMID 38428314.
Loureiro JA, Pereira MC. PLGA based drug carrier and pharmaceutical applications: the most recent advances. Pharmaceutics. 2020;12(9):903. doi: 10.3390/pharmaceutics12090903, PMID 32971970.
Razavi MS, Abdollahi A, Malek Khatabi A, Ejarestaghi NM, Atashi A, Yousefi N. Recent advances in PLGA-based nanofibers as anticancer drug delivery systems. J Drug Deliv Sci Technol. 2023 Aug;85:1-22. doi: 10.1016/j.jddst.2023.104587.
Rahman MS, Hasan MS, Nitai AS, Nam S, Karmakar AK, Ahsan MS. Recent developments of carboxymethyl cellulose. Polymers. 2021;13(8):1345. doi: 10.3390/polym13081345, PMID 33924089.
Capanema NS, Mansur AA, De Jesus AC, Carvalho SM, De Oliveira LC, Mansur HS. Superabsorbent crosslinked carboxymethyl cellulose-PEG hydrogels for potential wound dressing applications. Int J Biol Macromol. 2018 Jan;106:1218-34. doi: 10.1016/j.ijbiomac.2017.08.124, PMID 28851645.
Yu S, Budtova T. Creating and exploring carboxymethyl cellulose aerogels as drug delivery devices. Carbohydr Polym. 2024 May 15;332:121925. doi: 10.1016/j.carbpol.2024.121925, PMID 38431419.
Tundisi LL, Mostaco GB, Carricondo PC, Petri DF. Hydroxypropyl methylcellulose: physicochemical properties and ocular drug delivery formulations. Eur J Pharm Sci. 2021 Apr 1;159:105736. doi: 10.1016/j.ejps.2021.105736, PMID 33516807.
Zainal SH, Mohd NH, Suhaili N, Anuar FH, Lazim AM, Othaman R. Preparation of cellulose-based hydrogel: a review. J Mater Res Technol. 2021;10:935-52. doi: 10.1016/j.jmrt.2020.12.012.
Chen Y, Zhang L, Xu J, Xu S, LiY, Sun R. Development of a hydroxypropyl methylcellulose/polyacrylic acid interpolymer complex formulated buccal mucosa adhesive film to facilitate the delivery of insulin for diabetes treatment. Macromol. 2024 Jun 2;269:1-13. doi: 10.1016/j.ijbiomac.2024.131876, PMID 38685543.
Murtaza G. Ethylcellulose microparticles: a review. Acta Pol Pharm. 2012;69(1):11-22. PMID 22574502.
Wildy M, Wei W, Xu K, Schossig J, Hu X, La Cruz DS. Exploring temperature-responsive drug delivery with biocompatible fatty acids as phase change materials in ethyl cellulose nanofibers. Int J Biol Macromol. 2024;266(1):131187. doi: 10.1016/j.ijbiomac.2024.131187, PMID 38552686.
Wasilewska K, Winnicka K. Ethylcellulose a pharmaceutical excipient with multidirectional application in drug dosage forms development. Materials (Basel). 2019;12(20):3386. doi: 10.3390/ma12203386, PMID 31627271.
Ingole SA, Kumbharkhane A. Temperature-dependent broadband dielectric relaxation study of aqueous polyvinylpyrrolidone (PVP K-15, K-30 and K-90) using a TDR. Phys Chem Liq. 2021;59(5):806-16. doi: 10.1080/00319104.2020.1836641.
Sammour OA, Hammad MA, Megrab NA, Zidan AS. Formulation and optimization of mouth dissolve tablets containing rofecoxib solid dispersion. AAPS PharmSciTech. 2006;7(2):E55. doi: 10.1208/pt070255, PMID 16796372.
Borji BK, Pourmadadi M, Tajiki A, Abdouss M, Rahdar A, Diez Pascual AM. Polyvinyl pyrrolidone/starch/hydroxyapatite nanocomposite: a promising approach for controlled release of doxorubicin in cancer therapy. J Drug Deliv Sci Technol. 2024;95:1-9. doi: 10.1016/j.jddst.2024.105516.
Sandu MK, Majumdar S, Chatterjee S, Mazumder R. Optimization and characterization of xanthan gum-based multiparticulate formulation for colon targeting. Intelligent Pharmacy. 2024;2(3):339-45. doi: 10.1016/j.ipha.2024.02.007.
Signorini S, Delledonne A, Pescina S, Bianchera A, Sissa C, Vivero Lopez M. A sterilizable platform based on crosslinked xanthan gum for controlled release of polymeric micelles: ocular application for the delivery of neuroprotective compounds to the posterior eye segment. Int J Pharm. 2024 May 25;657:124141. doi: 10.1016/j.ijpharm.2024.124141, PMID 38677392.
Yagoub NA, Nur AO, Aleanizy FS, Osman Z. Evaluation of different grades of guar gum acacia gum and polyvinyl pyrrolidone as cross-linkers in producing submicron particles. Asian J Pharm Clin Res. 2022;15(6):136-43. doi: 10.22159/ajpcr.2022v15i6.44923.
Zarbab A, Sajjad A, Rasul A, Jabeen F, Javaid Iqbal M. Synthesis and characterization of guar gum based biopolymeric hydrogels as carrier materials for controlled delivery of methotrexate to treat colon cancer. Saudi J Biol Sci. 2023;30(8):103731. doi: 10.1016/j.sjbs.2023.103731, PMID 37483836.
Roy C, Gandhi A, Manna S, Jana S. Fabrication and evaluation of carboxymethyl guar gum chitosan interpenetrating polymer network (IPN) nanoparticles for controlled drug delivery. Med Nov Technol devices. 2024;22:2-7. doi: 10.1016/j.medntd.2024.100300.
Patra CN, Priya R, Swain S, Kumar Jena GK, Panigrahi KC, Ghose D. Pharmaceutical significance of eudragit: a review. Future J Pharm Sci. 2017;3(1):33-45. doi: 10.1016/j.fjps.2017.02.001.
Furuishi T, Kunimasu K, Fukushima K, Ogino T, Okamoto K, Yonemochi E. Formulation design and evaluation of a transdermal drug delivery system containing a novel eptazocine salt with the eudragit® E adhesive. J Drug Deliv Sci Technol. 2019 Dec;54:1-7. doi: 10.1016/j.jddst.2019.101289.
Anwar MZ, Kathuria H, Chiu GN. Development of a eudragit-based hydrogel for the controlled release of hydrophobic and hydrophilic drugs for the treatment of wound infections. J Drug Deliv Sci Technol. 2024;94:1-11. doi: 10.1016/j.jddst.2024.105484.
Liu Z, Ye L, Xi J, Wang J, Feng Z. Cyclodextrin polymers: structure synthesis and use as drug carriers. Prog Polym Sci. 2021;118:1-24. doi: 10.1016/j.progpolymsci.2021.101408.
Pinelli F, Ponti M, Delleani S, Pizzetti F, Vanoli V, Vangosa FB. β-Cyclodextrin functionalized agarose-based hydrogels for multiple controlled drug delivery of ibuprofen. Int J Biol Macromol. 2023 Dec 1;252:126284. doi: 10.1016/j.ijbiomac.2023.126284, PMID 37572821.
Mandal S, Khandalavala K, Pham R, Bruck P, Varghese M, Kochvar A. Cellulose acetate phthalate and antiretroviral nanoparticle fabrications for HIV pre-exposure prophylaxis. Polymers. 2017;9(9):423. doi: 10.3390/polym9090423, PMID 30450244.
Vidal Romero G, Rocha Perez V, Zambrano Zaragoza ML, Del Real A, Martinez Acevedo L, Galindo Perez MJ. Development and characterization of pH-dependent cellulose acetate phthalate nanofibers by electrospinning technique. Nanomaterials (Basel). 2021;11(12):3202. doi: 10.3390/nano11123202, PMID 34947551.
Hua D, Liu Z, Wang F, Gao B, Chen F, Zhang Q. pH responsive polyurethane (core) and cellulose acetate phthalate (shell) electrospun fibers for intravaginal drug delivery. Carbohydr Polym. 2016 Oct 20;151:1240-4. doi: 10.1016/j.carbpol.2016.06.066, PMID 27474676.
Reshmi G, Mohan Kumar P, Malathi M. Preparation characterization and dielectric studies on carbonyl iron/cellulose acetate hydrogen phthalate core/shell nanoparticles for drug delivery applications. Int J Pharm. 2009;365(1-2):131-5. doi: 10.1016/j.ijpharm.2008.08.006, PMID 18775769.
Sung YK, Kim SW. Recent advances in polymeric drug delivery systems. Biomater Res. 2020;24:12. doi: 10.1186/s40824-020-00190-7, PMID 32537239.
Men X, Geng X, Zhang Z, Chen H, Du M, Chen Z. Biomimetic semiconducting polymer dots for highly specific NIR-II fluorescence imaging of glioma. Mater Today Bio. 2022;16:100383. doi: 10.1016/j.mtbio.2022.100383, PMID 36017109.
Lee Y, Nam K, Kim YM, Yang K, Kim Y, Oh JW. Functional polymeric DNA nanostructure decorated cellulose nanocrystals for targeted and stimuli-responsive drug delivery. Carbohydr Polym. 2024;340:122270. doi: 10.1016/j.carbpol.2024.122270, PMID 38858000.
Ullah A, Jang M, Khan H, Choi HJ, An S, Kim D. Microneedle array with a pH-responsive polymer coating and its application in smart drug delivery for wound healing. Sens Actuators B. 2021 Oct 15;345:1-9. doi: 10.1016/j.snb.2021.130441.
Published
How to Cite
Issue
Section
Copyright (c) 2025 RANU BISWAS, PRITAM KAPAT, ARINDAM GHOSH, SHOUNAK SARKHEL, TANIMA SARKAR, DIPANKAR DAS

This work is licensed under a Creative Commons Attribution 4.0 International License.