MELATONIN: A FORGOTTEN MOLECULE TO PROTECT AGAINST SARS-COV-2 MEDIATED CARDIO-RESPIRATORY DISORDER

Authors

  • ABHIJIT GHOSH School of Biological Sciences and Technology, Department of Life Science-Microbiology, Maulana Abul Kalam Azad University of Technology, West Bengal-Main Campus, NH-12 (Old NH-34), Simhat, Haringhata, Nadia, West Bengal-741249, India https://orcid.org/0009-0002-2115-5741
  • SUBHAMOY BANERJEE School of Biological Sciences and Technology, Department of Life Science-Microbiology, Maulana Abul Kalam Azad University of Technology, West Bengal-Main Campus, NH-12 (Old NH-34), Simhat, Haringhata, Nadia, West Bengal-741249, India https://orcid.org/0009-0004-5750-6659
  • SHASHANKA DEBNATH Department of Biotechnology and Bioinformatics-M. Tech Bioinformatics, University of Hyderabad, Gachibowli, Hyderabad, Telangana-500046, India https://orcid.org/0009-0009-7523-2555
  • ARNAB KUMAR GHOSH School of Biological Sciences and Technology, Department of Applied Biology, Maulana Abul Kalam Azad University of Technology-Main Campus, NH-12 (Old NH-34), Simhat, Haringhata, Nadia, West Bengal-741249, India https://orcid.org/0000-0002-4465-0799

DOI:

https://doi.org/10.22159/ijpps.2025v17i8.54583

Keywords:

COVID-19, melatonin, Myocardial ischemia, Antioxidant, Anti-inflammatory

Abstract

The worldwide pandemic of Coronavirus disease 2019 (COVID-19) remains the worst disaster that modern times have experienced thus far. The dangerous virus has killed over a million individuals. The virulent virus destroys those individuals suffering from heart problems, along with their existing medical conditions. Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) functions as the virus that causes COVID-19 and demonstrates fatal consequences on alveolar and cardiovascular performance, especially within hypertensive populations. Wild reactive oxygen species (ROS) develop throughout the process. The main role of the endogenous pineal gland-produced hormone melatonin is to regulate circadian rhythm patterns in all mammalian organisms and other vertebrate species. This molecule, with extensively reported antioxidant potential, is gradually decreasing in our bodies due to stress. Recent reports highlight its cardio-protective action in myocardial ischemia through receptor-dependent and also receptor-independent antioxidant mechanism(s). Furthermore, its effect on anti-inflammatory signaling pathways in cardiac diseases without any side effects intrigued us to consider it as a possible therapeutic agent against COVID-19-induced myocardial ischemia. This publication demonstrates, through molecular mechanisms, that melatonin functions as a promising therapeutic compound for the treatment of SARS-CoV-2-infected patients. The development of these melatonin-producing activities will generate additional physician availability to provide quality medical care to patients while upholding their health status.

Downloads

Download data is not yet available.

References

1. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506. doi: 10.1016/S0140-6736(20)30183-5, PMID 31986264, PMCID PMC7159299.

2. Ruan Q, Yang K, Wang W, Jiang L, Song J. Correction to: clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020;46(6):1294-7. doi: 10.1007/s00134-020-06028-z, PMID 32253449, PMCID PMC7131986.

3. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020;323(11):1061-9. doi: 10.1001/jama.2020.1585, PMID 32031570, PMCID PMC7042881.

4. Shi S, Qin M, Shen B, Cai Y, Liu T, Yang F. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol. 2020;5(7):802-10. doi: 10.1001/jamacardio.2020.0950, PMID 32211816, PMCID PMC7097841.

5. Guo T, Fan Y, Chen M, Wu X, Zhang L, He T. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020;5(7):811-8. doi: 10.1001/jamacardio.2020.1017, PMID 32219356, PMCID PMC7101506.

6. Tam CF, Cheung KS, Lam S, Wong A, Yung A, Sze M. Impact of coronavirus disease 2019 (COVID-19) outbreak on ST-segment-elevation myocardial infarction care in Hong Kong, China. Circ Cardiovasc Qual Outcomes. 2020;13(4):e006631. doi: 10.1161/circoutcomes.120.006631, PMID 32182131.

7. Alsaidan AA, Al Kuraishy HM, Al Gareeb AI, Alexiou A, Papadakis M, Alsayed KA. The potential role of SARS-CoV-2 infection in acute coronary syndrome and type 2 myocardial infarction (T2mi): intertwining spread. Immun Inflamm Dis. 2023;11(3):e798. doi: 10.1002/iid3.798, PMID 36988260, PMCID PMC10022425.

8. Justyn M, Yulianti T, Wilar G. Long-term COVID-19 effect to endothelial damage trough extrinsic apoptosis led to cardiovascular disease progression: an update review. Int J App Pharm. 2023;15(6)60-8. doi: 10.22159/ijap.2023v15i6.48889.

9. Chen L, Li X, Chen M, Feng Y, Xiong C. The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2. Cardiovasc Res. 2020;116(6):1097-100. doi: 10.1093/cvr/cvaa078, PMID 32227090, PMCID PMC7184507.

10. Younis NK, Zareef RO, Al Hassan SN, Bitar F, Eid AH, Arabi M. Hydroxychloroquine in COVID-19 patients: pros and cons. Front Pharmacol. 2020 Nov 19;11:597985. doi: 10.3389/fphar.2020.597985, PMID 33364965, PMCID PMC7751757.

11. Tan DX, Hardeland R, Manchester LC, Paredes SD, Korkmaz A, Sainz RM. The changing biological roles of melatonin during evolution: from an antioxidant to signals of darkness sexual selection and fitness. Biol Rev Camb Philos Soc. 2010;85(3):607-23. doi: 10.1111/j.1469-185X.2009.00118.x, PMID 20039865.

12. Reiter RJ, Paredes SD, Manchester LC, Tan DX. Reducing oxidative/nitrosative stress: a newly discovered genre for melatonin. Crit Rev Biochem Mol Biol. 2009;44(4):175-200. doi: 10.1080/10409230903044914, PMID 19635037.

13. Tengattini S, Reiter RJ, Tan DX, Terron MP, Rodella LF, Rezzani R. Cardiovascular diseases: protective effects of melatonin. J Pineal Res. 2008;44(1):16-25. doi: 10.1111/j.1600-079X.2007.00518.x, PMID 18078444.

14. Samantaray S, Das A, Thakore NP, Matzelle DD, Reiter RJ, Ray SK. Therapeutic potential of melatonin in traumatic central nervous system injury. J Pineal Res. 2009;47(2):134-42. doi: 10.1111/j.1600-079X.2009.00703.x, PMID 19627458, PMCID 11877319.

15. Jou MJ, Peng TI. Visualization of melatonins multiple mitochondrial levels of protection against mitochondrial Ca2+-mediated permeability transition and beyond in rat brain astrocytes. Biophys J. 2010;98(3):378a. doi: 10.1016/j.bpj.2009.12.2038.

16. Paradies G, Petrosillo G, Paradies V, Reiter RJ, Ruggiero FM. Melatonin, cardiolipin and mitochondrial bioenergetics in health and disease. J Pineal Res. 2010;48(4):297-310. doi: 10.1111/j.1600-079X.2010.00759.x, PMID 20433638.

17. Waran K, Baby LP, Johnson N, John S, RS. Prospective observational study on myocardial infarction in relationship with various risk factors. Asian J Pharm Clin Res. 2016;9(9):156. doi: 10.22159/ajpcr.2016.v9s3.13735.

18. Reiter RJ, Tan DX, Manchester LC, Qi W. Biochemical reactivity of melatonin with reactive oxygen and nitrogen species: a review of the evidence. Cell Biochem Biophys. 2001;34(2):237-56. doi: 10.1385/CBB:34:2:237, PMID 11898866.

19. Long L, Han X, Ma X, Li K, Liu L, Dong J. Protective effects of fisetin against myocardial ischemia/reperfusion injury. Exp Ther Med. 2020;19(5):3177-88. doi: 10.3892/etm.2020.8576, PMID 32266013, PMCID PMC7132235.

20. Ferrario CM, Chappell MC, Tallant EA, Brosnihan KB, Diz DI. Counterregulatory actions of angiotensin-(1-7). Hypertension. 1997;30:535-41. doi: 10.1161/01.hyp.30.3.535, PMID 9322978.

21. Dellegar SM, Murphy SA, Bourne AE, DiCesare JC, Purser GH. Identification of the factors affecting the rate of deactivation of hypochlorous acid by melatonin. Biochem Biophys Res Commun. 1999;257(2):431-9. doi: 10.1006/bbrc.1999.0438, PMID 10198231.

22. Crackower MA, Sarao R, Oudit GY, Yagil C, Kozieradzki I, Scanga SE. Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature. 2002;417(6891):822-8. doi: 10.1038/nature00786, PMID 12075344.

23. Tesoriere L, Avellone G, Ceraulo L, Arpa D, Allegra M, Livrea MA. Oxidation of melatonin by oxoferryl hemoglobin: a mechanistic study. Free Radic Res. 2001;35(6):633-42. doi: 10.1080/10715760100301161, PMID 11811517.

24. Tan DX, Reiter RJ, Manchester LC, Yan MT, El Sawi M, Sainz RM. Chemical and physical properties and potential mechanisms: melatonin as a broad-spectrum antioxidant and free radical scavenger. Curr Top Med Chem. 2002;2(2):181-97. doi: 10.2174/1568026023394443, PMID 11899100.

25. Tan DX, Hardeland R, Manchester LC, Poeggeler B, Lopez Burillo S, Mayo JC. Mechanistic and comparative studies of melatonin and classic antioxidants in terms of their interactions with the ABTS cation radical. J Pineal Res. 2003;34(4):249-59. doi: 10.1034/j.1600-079x.2003.00037.x, PMID 12662346.

26. Shreen S, Nooreen N, Zahid U, Maleeha A, Samreen A, Zoheb M. Effect of melatonin in post-stroke recovery. Asian J Pharm Clin Res. 2022;15(4)77-81. doi: 10.22159/ajpcr.2022.v15i4.43466.

27. Reiter RJ. Melatonin: lowering the high price of free radicals. News Physiol Sci. 2000;15(5):246-50. doi: 10.1152/physiologyonline.2000.15.5.246, PMID 11390919.

28. Leon J, Acuna Castroviejo D, Escames G, Tan DX, Reiter RJ. Melatonin mitigates mitochondrial malfunction. J Pineal Res. 2005;38(1):1-9. doi: 10.1111/j.1600-079X.2004.00181.x, PMID 15617531.

29. Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020;46(4):586-90. doi: 10.1007/s00134-020-05985-9, PMID 32125455, PMCID PMC7079879.

30. Zhang R, Wang X, Ni L, Di X, Ma B, Niu S. COVID-19: melatonin as a potential adjuvant treatment. Life Sci. 2020 Jun 1;250:117583. doi: 10.1016/j.lfs.2020.117583, PMID 32217117, PMCID PMC7102583.

31. Li B, Yang J, Zhao F, Zhi L, Wang X, Liu L. Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. Clin Res Cardiol. 2020;109(5):531-8. doi: 10.1007/s00392-020-01626-9, PMID 32161990, PMCID PMC7087935.

32. Karasek M. Melatonin, human aging and age-related diseases. Exp Gerontol. 2004;39(11-12):1723-9. doi: 10.1016/j.exger.2004.04.012, PMID 15582288.

33. Li Y, Hu Y, Yu J, Ma T. Retrospective analysis of laboratory testing in 54 patients with severe or critical type 2019 novel coronavirus pneumonia. Lab Investig. 2020;100(6):794-800. doi: 10.1038/s41374-020-0431-6, PMID 32341519, PMCID PMC7184820.

34. Varga Z, Flammer AJ, Steiger P, Haberecker M, Andermatt R, Zinkernagel AS. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395(10234):1417-8. doi: 10.1016/S0140-6736(20)30937-5, PMID 32325026, PMCID PMC7172722.

35. Richardson MA, Gupta A, O Brien LA, Berg DT, Gerlitz B, Syed S. Treatment of sepsis-induced acquired protein C deficiency reverses angiotensin converting enzyme-2 inhibition and decreases pulmonary inflammatory response. J Pharmacol Exp Ther. 2008;325(1):17-26. doi: 10.1124/jpet.107.130609, PMID 18182560.

36. Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel corona virus pneumonia. J Thromb Haemost. 2020;18(4):844-7. doi: 10.1111/jth.14768, PMID 32073213, PMCID PMC7166509.

37. Schmidt Arras D, Rose John S. IL-6 pathway in the liver: from physiopathology to therapy. J Hepatol. 2016;64(6):1403-15. doi: 10.1016/j.jhep.2016.02.004, PMID 26867490.

38. Liu X, Liu X, Xu Y, Xu Z, Huang Y, Chen S. Ventilatory ratio in hypercapnic mechanically ventilated patients with COVID-19-associated acute respiratory distress syndrome. Am J Respir Crit Care Med. 2020;201(10):1297-9. doi: 10.1164/rccm.202002-0373LE, PMID 32203672, PMCID PMC7233337.

39. Rodriguez B, Trayanova N, Noble D. Modeling cardiac ischemia. Ann N Y Acad Sci. 2006;1080(1):395-414. doi: 10.1196/annals.1380.029, PMID 17132797, PMCID PMC3313589.

40. Alhogbani T. Acute myocarditis associated with novel Middle East respiratory syndrome coronavirus. Ann Saudi Med. 2016;36(1):78-80. doi: 10.5144/0256-4947.2016.78, PMID 26922692.

41. Driggin E, Madhavan MV, Bikdeli B, Chuich T, Laracy J, Biondi Zoccai G, Der Nigoghossian C, Zidar DA, Haythe J, Brodie D, Beckman JA, Kirtane AJ, Stone GW, Krumholz HM, Parikh SA. Cardiovascular considerations for patients, health care workers and health systems during the COVID-19 pandemic. J Am Coll Cardiol. 2020;75(18):2352–71. doi 10.1016/j.jacc.2020.03.031.

42. Li L, Huang Q, Wang DC, Ingbar DH, Wang X. Acute lung injury in patients with COVID-19 infection. Clin Transl Med. 2020;10(1):20-7. doi: 10.1002/ctm2.16, PMID 32508022, PMCID PMC7240840.

43. Finkel T. Signal transduction by reactive oxygen species in non-phagocytic cells. J Leukoc Biol. 1999;65(3):337-40. doi: 10.1002/jlb.65.3.337, PMID 10080536.

44. Delgado Roche L, Mesta F. Oxidative stress as key player in severe acute respiratory syndrome coronavirus (SARS-CoV) infection. Arch Med Res. 2020;51(5):384-7. doi: 10.1016/j.arcmed.2020.04.019, PMID 32402576, PMCID PMC7190501.

45. Ardes D, Boccatonda A, Rossi I, Guagnano MT, Santilli F, Cipollone F. COVID-19 and RAS: unravelling an unclear relationship. Int J Mol Sci. 2020;21(8):3003. doi: 10.3390/ijms21083003, PMID 32344526.

46. Khomich OA, Kochetkov SN, Bartosch B, Ivanov AV. Redox biology of respiratory viral infections. Viruses. 2018;10(8):392. doi: 10.3390/v10080392, PMID 30049972.

47. Saleh J, Peyssonnaux C, Singh KK, Edeas M. Mitochondria and microbiota dysfunction in COVID-19 pathogenesis. Mitochondrion. 2020 Sep;54:1-7. doi: 10.1016/j.mito.2020.06.008, PMID 32574708, PMCID PMC7837003.

48. Peterhans E. Sendai virus stimulates chemiluminescence in mouse spleen cells. Biochem Biophys Res Commun. 1979;91(1):383-92. doi: 10.1016/0006-291x(79)90630-2, PMID 229848.

49. Reiter RJ, Tan DX. Melatonin: a novel protective agent against oxidative injury of the ischemic/reperfused heart. Cardiovasc Res. 2003;58(1):10-9. doi: 10.1016/s0008-6363(02)00827-1, PMID 12667942.

50. Cecchini R, Cecchini AL. SARS-CoV-2 infection pathogenesis is related to oxidative stress as a response to aggression. Med Hypotheses. 2020;143:(110102). doi: 10.1016/j.mehy.2020.110102, PMID 32721799, PMCID PMC7357498.

51. Ng MP, Lee JC, Loke WM, Yeo LL, Quek AM, Lim EC. Does influenza a infection increase oxidative damage? Antioxid Redox Signal. 2014;21(7):1025-31. doi: 10.1089/ars.2014.5907, PMID 24673169.

52. Reiter RJ, Tan DX, Allegra M. Melatonin: reducing molecular pathology and dysfunction due to free radicals and associated reactants. Neuro Endocrinol Lett. 2002;23 Suppl 1:3-8. PMID 12019343.

53. Taube H. Mechanisms of oxidation with oxygen. J Gen Physiol. 1965;49(1)Suppl:29-52. doi: 10.1085/jgp.49.1.29, PMID 5859925, PMCID PMC2195455.

54. Halliwell B, Gutteridge JM. Biologically relevant metal ion-dependent hydroxyl radical generation an update. FEBS Lett. 1992;307(1):108-12. doi: 10.1016/0014-5793(92)80911-y, PMID 1322323.

55. Halliwell B. Oxidants and human disease: some new concepts. FASEB J. 1987;1(5):358-64. doi: 10.1096/fasebj.1.5.2824268, PMID 2824268.

56. Gutteridge JM. Hydroxyl radicals iron oxidative stress and neurodegenerationa. Ann N Y Acad Sci. 1994;738(1):201-13. doi: 10.1111/j.1749-6632.1994.tb21805.x.

57. Valencia AM, Abrantes MA, Hasan J, Aranda JV, Beharry KD. Reactive oxygen species biomarkers of microvascular maturation and alveolarization and antioxidants in oxidative lung injury. React Oxyg Species (Apex). 2018;6(18):373-88. doi: 10.20455/ros.2018.867, PMID 30533532.

58. Gupta A, Madhavan MV, Sehgal K, Nair N, Mahajan S, Sehrawat TS. Extrapulmonary manifestations of COVID-19. Nat Med. 2020;26(7):1017-32. doi: 10.1038/s41591-020-0968-3, PMID 32651579, PMCID PMC11972613.

59. Alharthy A, Faqihi F, Memish ZA, Karakitsos D. Lung injury in COVID-19-an emerging hypothesis. ACS Chem Neurosci. 2020;11(15):2156-8. doi: 10.1021/acschemneuro.0c00422, PMID 32709193, PMCID PMC7393669.

60. Hamming I, Timens W, Bulthuis ML, Lely AT, Navis GJ, Van Goor H. Tissue distribution of ACE2 protein the functional receptor for SARS coronavirus a first step in understanding SARS pathogenesis. J Pathol. 2004;203(2):631-7. doi: 10.1002/path.1570, PMID 15141377, PMCID PMC7167720.

61. Barkauskas CE, Cronce MJ, Rackley CR, Bowie EJ, Keene DR, Stripp BR. Type 2 alveolar cells are stem cells in adult lung. J Clin Invest. 2013;123(7):3025-36. doi: 10.1172/JCI68782, PMID 23921127, PMCID PMC3696553.

62. Rivellese F, Prediletto E. ACE2 at the centre of COVID-19 from paucisymptomatic infections to severe pneumonia. Autoimmun Rev. 2020;19(6):102536. doi: 10.1016/j.autrev.2020.102536, PMID 32251718, PMCID PMC7195011.

63. Ucar M, Korkmaz A, Reiter RJ, Yaren H, Oter S, Kurt B. Melatonin alleviates lung damage induced by the chemical warfare agent nitrogen mustard. Toxicol Lett. 2007;173(2):124-31. doi: 10.1016/j.toxlet.2007.07.005, PMID 17765411.

64. Nicholls JM, Poon LL, Lee KC, Ng WF, Lai ST, Leung CY. Lung pathology of fatal severe acute respiratory syndrome. Lancet. 2003;361(9371):1773-8. doi: 10.1016/s0140-6736(03)13413-7, PMID 12781536, PMCID PMC7112492.

65. Tian H, Liu Y, Li Y, Wu CH, Chen B, Kraemer MU. An investigation of transmission control measures during the first 50 d of the COVID-19 epidemic in China. Science. 2020;368(6491):638-42. doi: 10.1126/science.abb6105, PMID 32234804.

66. Barton LM, Duval EJ, Stroberg E, Ghosh S, Mukhopadhyay S. COVID-19 autopsies Oklahoma USA. Am J Clin Pathol. 2020;153(6):725-33. doi: 10.1093/ajcp/aqaa062, PMID 32275742, PMCID PMC7184436.

67. Selvarani G, Nagasundar G, Nisamudeen KM, Balasubramanian S, Veeramani SR, Natarajan M. Diagnosis and management of arrhythmias in COVID-19 patients in a Tertiary Care Hospital: outcomes and clinical implications. International Journal of Current Pharmaceutical Review. 2023;15(3):262-70.

68. Siddiqi HK, Mehra MR. COVID-19 illness in native and immunosuppressed states: a clinical therapeutic staging proposal. J Heart Lung Transplant. 2020;39(5):405-7. doi: 10.1016/j.healun.2020.03.012, PMID 32362390.

69. Imai Y, Kuba K, Neely GG, Yaghubian Malhami R, Perkmann T, Van Loo G. Identification of oxidative stress and toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell. 2008;133(2):235-49. doi: 10.1016/j.cell.2008.02.043, PMID 18423196, PMCID PMC7112336.

70. Gilad E, Cuzzocrea S, Zingarelli B, Salzman AL, Szabo C. Melatonin is a scavenger of peroxynitrite. Life Sci. 1997;60(10):PL169-74. doi: 10.1016/s0024-3205(97)00008-8, PMID 9064472.

71. Topal T, Oztas Y, Korkmaz A, Sadir S, Oter S, Coskun O. Melatonin ameliorates bladder damage induced by cyclophosphamide in rats. J Pineal Res. 2005;38(4):272-7. doi: 10.1111/j.1600-079X.2004.00202.x, PMID 15813904.

72. Lopez Burillo S, Tan DX, Mayo JC, Sainz RM, Manchester LC, Reiter RJ. Melatonin xanthurenic acid, resveratrol EGCG vitamin C and α‐lipoic acid differentially reduce oxidative DNA damage induced by Fenton reagents: a study of their individual and synergistic actions: synergistic actions of melatonin. J Pineal Res. 2003;34(4):269-77. doi: 10.1034/j.1600-079x.2003.00041.x, PMID 12662349.

73. Sudnikovich EJ, Maksimchik YZ, Zabrodskaya SV, Kubyshin VL, Lapshina EA, Bryszewska M. Melatonin attenuates metabolic disorders due to streptozotocin-induced diabetes in rats. Eur J Pharmacol. 2007;569(3):180-7. doi: 10.1016/j.ejphar.2007.05.018, PMID 17597602.

74. Baydas G, Canatan H, Turkoglu A. Comparative analysis of the protective effects of melatonin and vitamin E on streptozocin-induced diabetes mellitus. J Pineal Res. 2002;32(4):225-30. doi: 10.1034/j.1600-079x.2002.01856.x, PMID 11982791.

75. Wahab MH, Akoul ES, Abdel Aziz AA. Modulatory effects of melatonin and vitamin E on doxorubicin-induced cardiotoxicity in ehrlich ascites carcinoma bearing mice. Tumori. 2000;86(2):157-62. doi: 10.1177/030089160008600210, PMID 10855855.

76. Montilla P, Cruz A, Padillo FJ, Tunez I, Gascon F, Munoz MC. Melatonin versus vitamin E as protective treatment against oxidative stress after extrahepatic bile duct ligation in rats. J Pineal Res. 2001;31(2):138-44. doi: 10.1034/j.1600-079x.2001.310207.x, PMID 11555169.

77. Hsu C, Han B, Liu M, Yeh C, Casida JE. Phosphine induced oxidative damage in rats: attenuation by melatonin. Free Radic Biol Med. 2000;28(4):636-42. doi: 10.1016/s0891-5849(99)00277-4, PMID 10719245.

78. Gultekin F, Delibas N, Yasar S, Kilinc I. In vivo changes in antioxidant systems and protective role of melatonin and a combination of vitamin C and vitamin E on oxidative damage in erythrocytes induced by chlorpyrifos ethyl in rats. Arch Toxicol. 2001;75(2):88-96. doi: 10.1007/s002040100219, PMID 11354911.

79. Rosales Corral S, Tan DX, Reiter RJ, Valdivia Velazquez M, Martinez Barboza G, Acosta Martinez JP. Orally administered melatonin reduces oxidative stress and proinflammatory cytokines induced by amyloid-β peptide in rat brain: a comparative in vivo study versus vitamin C and E. J Pineal Res. 2003;35(2):80-4. doi: 10.1034/j.1600-079x.2003.00057.x, PMID 12887649.

80. Anwar MM, Meki AR. Oxidative stress in streptozotocin-induced diabetic rats: effects of garlic oil and melatonin. Comp Biochem Physiol A Mol Integr Physiol. 2003;135(4):539-47. doi: 10.1016/s1095-6433(03)00114-4, PMID 12890544.

81. Winiarska K, Fraczyk T, Malinska D, Drozak J, Bryla J. Melatonin attenuates diabetes-induced oxidative stress in rabbits. J Pineal Res. 2006;40(2):168-76. doi: 10.1111/j.1600-079X.2005.00295.x, PMID 16441554.

82. Gitto E, Reiter RJ, Cordaro SP, La Rosa M, Chiurazzi P, Trimarchi G. Oxidative and inflammatory parameters in respiratory distress syndrome of preterm newborns: beneficial effects of melatonin. Am J Perinatol. 2004;21(4):209-16. doi: 10.1055/s-2004-828610, PMID 15168319.

83. Gitto E, Reiter RJ, Sabatino G, Buonocore G, Romeo C, Gitto P. Correlation among cytokines, bronchopulmonary dysplasia and modality of ventilation in preterm newborns: improvement with melatonin treatment. J Pineal Res. 2005;39(3):287-93. doi: 10.1111/j.1600-079X.2005.00251.x, PMID 16150110.

84. Mukherjee D, Roy SG, Bandyopadhyay A, Chattopadhyay A, Basu A, Mitra E. Melatonin protects against isoproterenol-induced myocardial injury in the rat: antioxidative mechanisms. J Pineal Res. 2010;48(3):251-62. doi: 10.1111/j.1600-079X.2010.00749.x, PMID 20210856.

85. Abadi SH, Shirazi A, Alizadeh AM, Changizi V, Najafi M, Khalighfard S. The effect of melatonin on superoxide dismutase and glutathione peroxidase activity and malondialdehyde levels in the targeted and the non-targeted lung and heart tissues after irradiation in xenograft mice colon cancer. Curr Mol Pharmacol. 2018;11(4):326-35. doi: 10.2174/1874467211666180830150154, PMID 30173656.

86. Bindoli A, Rigobello MP, Deeble DJ. Biochemical and toxicological properties of the oxidation products of catecholamines. Free Radic Biol Med. 1992;13(4):391-405. doi: 10.1016/0891-5849(92)90182-g, PMID 1398218.

87. Chattopadhyay A, Biswas S, Bandyopadhyay D, Sarkar C, Datta AG. Effect of isoproterenol on lipid peroxidation and antioxidant enzymes of myocardial tissue of mice and protection by quinidine. Mol Cell Biochem. 2003;245(1-2):43-9. doi: 10.1023/a:1022808224917, PMID 12708743.

88. Armagan A, Uz E, Yilmaz HR, Soyupek S, Oksay T, Ozcelik N. Effects of melatonin on lipid peroxidation and antioxidant enzymes in streptozotocin-induced diabetic rat testis. Asian J Androl. 2006;8(5):595-600. doi: 10.1111/j.1745-7262.2006.00177.x, PMID 16752005.

89. Buffinton GD, Christen S, Peterhans E, Stocker R. Oxidative stress in lungs of mice infected with influenza a virus. Free Radic Res Commun. 1992;16(2):99-110. doi: 10.3109/10715769209049163, PMID 1321077.

90. Amatore D, Sgarbanti R, Aquilano K, Baldelli S, Limongi D, Civitelli L. Influenza virus replication in lung epithelial cells depends on redox-sensitive pathways activated by NOX4-derived ROS. Cell Microbiol. 2015;17(1):131-45. doi: 10.1111/cmi.12343, PMID 25154738.

91. Mayo JC, Tan DX, Sainz RM, Lopez Burillo S, Reiter RJ. Oxidative damage to catalase induced by peroxyl radicals: functional protection by melatonin and other antioxidants. Free Radic Res. 2003;37(5):543-53. doi: 10.1080/1071576031000083206, PMID 12797476.

92. Lodigiani C, Iapichino G, Carenzo L, Cecconi M, Ferrazzi P, Sebastian T. Venous and arterial thromboembolic complications in COVID-19 patients admitted to an academic hospital in Milan, Italy. Thromb Res. 2020 Jul;191:9-14. doi: 10.1016/j.thromres.2020.04.024, PMID 32353746, PMCID PMC7177070.

93. Lim JY, Oh E, Kim Y, Jung WW, Kim HS, Lee J. Enhanced oxidative damage to DNA lipids and proteins and levels of some antioxidant enzymes, cytokines and heat shock proteins in patients infected with influenza H1N1 virus. Acta Virol. 2014;58(3):253-60. doi: 10.4149/av_2014_03_253, PMID 25283860.

94. Vural H, Sabuncu T, Arslan SO, Aksoy N. Melatonin inhibits lipid peroxidation and stimulates the antioxidant status of diabetic rats. J Pineal Res. 2001;31(3):193-8. doi: 10.1034/j.1600-079x.2001.310301.x, PMID 11589752.

95. Kaya H, Delibas N, Serteser M, Ulukaya E, Ozkaya O. The effect of melatonin on lipid peroxidation during radiotherapy in female rats. Strahlenther Onkol. 1999;175(6):285-8. doi: 10.1007/BF02743581, PMID 10392170.

96. Desco MC, Asensi M, Marquez R, Martinez Valls J, Vento M, Pallardo FV. Xanthine oxidase is involved in free radical production in type 1 diabetes: protection by allopurinol. Diabetes. 2002;51(4):1118-24. doi: 10.2337/diabetes.51.4.1118, PMID 11916934.

97. Bandyopadhyay D, Bandyopadhyay A, Das PK, Reiter RJ. Melatonin protects against gastric ulceration and increases the efficacy of ranitidine and omeprazole in reducing gastric damage. J Pineal Res. 2002;33(1):1-7. doi: 10.1034/j.1600-079x.2002.01107.x, PMID 12121479.

98. Bandyopadhyay D, Ghosh G, Bandyopadhyay A, Reiter RJ. Melatonin protects against piroxicam-induced gastric ulceration. J Pineal Res. 2004;36(3):195-203. doi: 10.1111/j.1600-079x.2004.00118.x, PMID 15009511.

99. Naaz S, Mishra S, Pal PK, Chattopadhyay A, Das AR, Bandyopadhyay D. Activation of SIRT1/PGC 1α/SIRT3 pathway by melatonin provides protection against mitochondrial dysfunction in isoproterenol-induced myocardial injury. Heliyon. 2020;6(10):e05159. doi: 10.1016/j.heliyon.2020.e05159, PMID 33088945, PMCID PMC7567935.

100. Lazarow A, Cooperstein SJ. Abstracts of the seminar papers presented at the Marine Biological Laboratory. Biol Bull. 1950;99(2):321-68.

101. Srinivasan V, Spence DW, Pandi Perumal SR, Brown GM, Cardinali DP. Melatonin in mitochondrial dysfunction and related disorders. Int J Alzheimers Dis. 2011;2011(1):326320. doi: 10.4061/2011/326320, PMID 21629741, PMCID PMC3100547.

102. Tang X, Luo YX, Chen HZ, Liu DP. Mitochondria endothelial cell function and vascular diseases. Front Physiol. 2014 May 6;5:175. doi: 10.3389/fphys.2014.00175, PMID 24834056, PMCID PMC4018556.

103. Cobley JN, Noble A, Jimenez Fernandez E, Valdivia Moya MT, Guille M, Husi H. Catalyst-free click PEGylation reveals substantial mitochondrial ATP synthase sub-unit alpha oxidation before and after fertilisation. Redox Biol. 2019;26:101258. doi: 10.1016/j.redox.2019.101258, PMID 31234016, PMCID PMC6597785.

104. Cobley J, Noble A, Bessell R, Guille M, Husi H. Reversible thiol oxidation inhibits the mitochondrial ATP synthase in Xenopus laevis oocytes. Antioxidants (Basel). 2020;9(3):215. doi: 10.3390/antiox9030215, PMID 32150908, PMCID PMC7139892.

105. Fariss MW, Chan CB, Patel M, Van Houten B, Orrenius S. Role of mitochondria in toxic oxidative stress. Mol Interv. 2005;5(2):94-111. doi: 10.1124/mi.5.2.7, PMID 15821158.

106. Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V. Oxidative stress: harms and benefits for human health. Oxid Med Cell Longev. 2017;2017(1):8416763. doi: 10.1155/2017/8416763, PMID 28819546, PMCID PMC5551541.

107. Mukherjee D, Ghosh AK, Bandyopadhyay A, Basu A, Datta S, Pattari SK. Melatonin protects against isoproterenol-induced alterations in cardiac mitochondrial energy metabolizing enzymes, apoptotic proteins and assists in complete recovery from myocardial injury in rats. J Pineal Res. 2012;53(2):166-79. doi: 10.1111/j.1600-079x.2012.00984.x, PMID 23050266.

108. Leon J, Acuna Castroviejo D, Sainz RM, Mayo JC, Tan DX, Reiter RJ. Melatonin and mitochondrial function. Life Sci. 2004;75(7):765-90. doi: 10.1016/j.lfs.2004.03.003, PMID 15183071.

109. Yu H, Zhang J, Ji Q, Yu K, Wang P, Song M. Melatonin alleviates aluminium chloride-induced immunotoxicity by inhibiting oxidative stress and apoptosis associated with the activation of Nrf2 signaling pathway. Ecotoxicol Environ Saf. 2019;173:131-41. doi: 10.1016/j.ecoenv.2019.01.095, PMID 30771656.

110. Guo Y, Sun J, Li T, Zhang Q, Bu S, Wang Q. Melatonin ameliorates restraint stress-induced oxidative stress and apoptosis in testicular cells via NF-κB/iNOS and Nrf2/ HO-1 signaling pathway. Sci Rep. 2017;7(1):9599. doi: 10.1038/s41598-017-09943-2, PMID 28851995, PMCID PMC5575312.

111. Santofimia Castano P, Clea Ruy D, Garcia Sanchez L, Jimenez Blasco D, Fernandez Bermejo M, Bolanos JP. Melatonin induces the expression of Nrf2-regulated antioxidant enzymes via PKC and Ca2+ influx activation in mouse pancreatic acinar cells. Free Radic Biol Med. 2015;87:226-36. doi: 10.1016/j.freeradbiomed.2015.06.033, PMID 26163001.

112. Deng Y, Zhu J, Mi C, Xu B, Jiao C, Li Y. Melatonin antagonizes Mn-induced oxidative injury through the activation of keap1-Nrf2-ARE signaling pathway in the striatum of mice. Neurotox Res. 2015;27(2):156-71. doi: 10.1007/s12640-014-9489-5, PMID 25288107.

113. Reiter RJ, Ma Q, Sharma R. Treatment of ebola and other infectious diseases: melatonin goes viral. Melatonin Res. 2020;3(1):43-57. doi: 10.32794/mr11250047.

114. Wu X, Ji H, Wang Y, Gu C, Gu W, Hu L. Melatonin alleviates radiation-induced lung injury via regulation of miR-30e/NLRP3 axis. Oxid Med Cell Longev. 2019;2019:4087298. doi: 10.1155/2019/4087298, PMID 30755784, PMCID PMC6348879.

115. Habtemariam S, Daglia M, Sureda A, Selamoglu Z, Gulhan MF, Nabavi SM. Melatonin and respiratory diseases: a review. Curr Top Med Chem. 2017;17(4):467-88. doi: 10.2174/1568026616666160824120338, PMID 27558675.

116. Hardeland R. Aging melatonin and the pro- and anti-inflammatory networks. Int J Mol Sci. 2019;20(5):1223. doi: 10.3390/ijms20051223, PMID 30862067, PMCID PMC6429360.

117. Hardeland R. Melatonin and inflammation story of a double-edged blade. J Pineal Res. 2018;65(4):e12525. doi: 10.1111/jpi.12525, PMID 30242884.

118. Sun CK, Lee FY, Kao YH, Chiang HJ, Sung PH, Tsai TH. Systemic combined melatonin mitochondria treatment improves acute respiratory distress syndrome in the rat. J Pineal Res. 2015;58(2):137-50. doi: 10.1111/jpi.12199, PMID 25491480.

119. Ling GS, Crawford G, Buang N, Bartok I, Tian K, Thielens NM. C1q restrains autoimmunity and viral infection by regulating CD8+ T cell metabolism. Science. 2018;360(6388):558-63. doi: 10.1126/science.aao4555, PMID 29724957.

120. Pedrosa AM, Weinlich R, Mognol GP, Robbs BK, Viola JP, Campa A. Melatonin protects CD4+ T cells from activation-induced cell death by blocking NFAT-mediated CD95 ligand upregulation. J Immunol. 2010;184(7):3487-94. doi: 10.4049/jimmunol.0902961, PMID 20181888.

121. Ahmadi Z, Ashrafizadeh M. Melatonin as a potential modulator of Nrf2. Fundam Clin Pharmacol. 2020;34(1):11-9. doi: 10.1111/fcp.12498, PMID 31283051.

122. Sun D, Li H, Lu XX, Xiao H, Ren J, Zhang FR. Clinical features of severe pediatric patients with coronavirus disease 2019 in Wuhan: a single center’s observational study. World J Pediatr. 2020;16(3):251-9. doi: 10.1007/s12519-020-00354-4, PMID 32193831, PMCID PMC7091225.

123. Prompetchara E, Ketloy C, Palaga T. Immune responses in COVID-19 and potential vaccines: lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol. 2020;38(1):1-9. doi: 10.12932/AP-200220-0772, PMID 32105090.

124. Huang KJ, Su IJ, Theron M, Wu YC, Lai SK, Liu CC. An interferon-γ-related cytokine storm in SARS patients. J Med Virol. 2005;75(2):185-94. doi: 10.1002/jmv.20255, PMID 15602737.

125. Hendricks K, To E, Vlahos R, Broughton B, Peshavariya H, Selemidis S. Influenza a virus causes vascular endothelial cell oxidative stress via NOX2 oxidase. 32 airway cell biology and immunopathology. European Respiratory Society; 2016;48(Suppl 60):PA3967. doi: 10.1183/13993003.congress-2016.PA3967.

126. Hardeland R. Melatonin and the theories of aging: a critical appraisal of melatonins role in antiaging mechanisms. J Pineal Res. 2013;55(4):325-56. doi: 10.1111/jpi.12090, PMID 24112071.

127. Hardeland R, Cardinali DP, Brown GM, Pandi Perumal SR. Melatonin and brain inflammaging. Prog Neurobiol. 2015 Apr;127-128:46-63. doi: 10.1016/j.pneurobio.2015.02.001, PMID 25697044.

128. Hardeland R. Melatonin and the electron transport chain. Cell Mol Life Sci. 2017;74(21):3883-96. doi: 10.1007/s00018-017-2615-9, PMID 28785805, PMCID PMC11107625.

129. Hardeland R, Cardinali DP, Srinivasan V, Spence DW, Brown GM, Pandi-Perumal SR. Melatonin a pleiotropic orchestrating regulator molecule. Prog Neurobiol. 2011;93(3):350-84. doi: 10.1016/j.pneurobio.2010.12.004, PMID 21193011.

130. Liu Z, Gan L, Xu Y, Luo D, Ren Q, Wu S. Melatonin alleviates inflammasome-induced pyroptosis through inhibiting NF-κB/GSDMD signal in mice adipose tissue. J Pineal Res. 2017;63(1):e12414. doi: 10.1111/jpi.12414, PMID 28398673.

131. Permpoonputtana K, Govitrapong P. The anti-inflammatory effect of melatonin on methamphetamine induced proinflammatory mediators in human neuroblastoma dopamine SH-SY5Y cell lines. Neurotox Res. 2013;23(2):189-99. doi: 10.1007/s12640-012-9350-7, PMID 22903344.

132. El Bakry HA, Ismail IA, Soliman SS. Immunosenescence like state is accelerated by constant light exposure and counteracted by melatonin or turmeric administration through DJ-1/Nrf2 and P53/Bax pathways. J Photochem Photobiol B. 2018 Sep;186:69-80. doi: 10.1016/j.jphotobiol.2018.07.003, PMID 30015062.

133. Yaribeygi H, Panahi Y, Javadi B, Sahebkar A. The underlying role of oxidative stress in neurodegeneration: a mechanistic review. CNS Neurol Disord Drug Targets. 2018;17(3):207-15. doi: 10.2174/1871527317666180425122557, PMID 29692267.

134. Hardeland R. Antioxidative protection by melatonin: multiplicity of mechanisms from radical detoxification to radical avoidance. Endocrine. 2005;27(2):119-30. doi: 10.1385/endo:27:2:119, PMID 16217125.

135. Reiter RJ, Mayo JC, Tan DX, Sainz RM, Alatorre Jimenez M, Qin L. Melatonin as an antioxidant: under promises but over delivers. J Pineal Res. 2016;61(3):253-78. doi: 10.1111/jpi.12360, PMID 27500468.

136. Hardeland R. Melatonin: signaling mechanisms of a pleiotropic agent. BioFactors. 2009;35(2):183-92. doi: 10.1002/biof.23, PMID 19449447.

137. Hardeland R. Cognitive enhancers in moderate to severe alzheimers disease. Clinical Medicine Insights: Therapeutics. 2011;3(3):459. doi: 10.4137/CMT.S6344.

138. Rehman K, Akash MS, Liaqat A, Kamal S, Qadir MI, Rasul A. Role of interleukin-6 in development of insulin resistance and type 2 diabetes mellitus. Crit Rev Eukaryot Gene Expr. 2017;27(3):229-36. doi: 10.1615/CritRevEukaryotGeneExpr.2017019712, PMID 29199608.

139. Sharma A, Tate M, Mathew G, Vince JE, Ritchie RH, de Haan JB. Oxidative stress and NLRP3-inflammasome activity as significant drivers of diabetic cardiovascular complications: therapeutic implications. Front Physiol. 2018;9:114. doi: 10.3389/fphys.2018.00114, PMID 29515457, PMCID PMC5826188.

140. Ren W, Liu G, Chen S, Yin J, Wang J, Tan B. Melatonin signaling in T cells: functions and applications. J Pineal Res. 2017;62(3):e12394. doi: 10.1111/jpi.12394, PMID 28152213.

141. Shi D, Xiao X, Wang J, Liu L, Chen W, Fu L. Melatonin suppresses proinflammatory mediators in lipopolysaccharide-stimulated CRL1999 cells via targeting MAPK, NF-κB, c/EBPβ, and p300 signaling. J Pineal Res. 2012;53(2):154-65. doi: 10.1111/j.1600-079X.2012.00982.x, PMID 22348531.

142. Deng WG, Tang ST, Tseng HP, Wu KK. Melatonin suppresses macrophage cyclooxygenase-2 and inducible nitric oxide synthase expression by inhibiting p52 acetylation and binding. Blood. 2006;108(2):518-24. doi: 10.1182/blood-2005-09-3691, PMID 16609073, PMCID PMC1895491.

143. Negi G, Kumar A, Sharma SS. Melatonin modulates neuroinflammation and oxidative stress in experimental diabetic neuropathy: effects on NF-κB and Nrf2 cascades. J Pineal Res. 2011;50(2):124-31. doi: 10.1111/j.1600-079X.2010.00821.x, PMID 21062351.

144. Ramamoorthy H, Abraham P, Isaac B, Selvakumar D. Role for NF-κB inflammatory signalling pathway in tenofovir disoproxil fumarate (TDF) induced renal damage in rats. Food Chem Toxicol. 2017;99:103-18. doi: 10.1016/j.fct.2016.11.029, PMID 27899301.

145. Nopparat C, Sinjanakhom P, Govitrapong P. Melatonin reverses H2O2-induced senescence in SH-SY5Y cells by enhancing autophagy via sirtuin 1 deacetylation of the RelA/p65 subunit of NF-κB. J Pineal Res. 2017;63(1). doi: 10.1111/jpi.12407.

146. Shrestha S, Zhu J, Wang Q, Du X, Liu F, Jiang J. Melatonin potentiates the antitumor effect of curcumin by inhibiting IKKβ/NF-κB/COX-2 signaling pathway. Int J Oncol. 2017;51(4):1249-60. doi: 10.3892/ijo.2017.4097, PMID 28849163.

147. Ping Z, Wang Z, Shi J, Wang L, Guo X, Zhou W. Inhibitory effects of melatonin on titanium particle-induced inflammatory bone resorption and osteoclast genesis via suppression of NF-κB signaling. Acta Biomater. 2017 Oct 15;62:362-71. doi: 10.1016/j.actbio.2017.08.046, PMID 28867647.

148. Jung KH, Hong SW, Zheng HM, Lee HS, Lee H, Lee DH. Melatonin ameliorates cerulean-induced pancreatitis by the modulation of nuclear erythroid 2-related factor 2 and nuclear factor kappaB in rats. J Pineal Res. 2010;48(3):239-50. doi: 10.1111/j.1600-079X.2010.00748.x, PMID 20210857.

149. Aparicio Soto M, Alarcon De La Lastra C, Cardeno A, Sanchez Fidalgo S, Sanchez Hidalgo M. Melatonin modulates microsomal PGE synthase 1 and NF-E2-related factor-2-regulated antioxidant enzyme expression in LPS-induced murine peritoneal macrophages. Br J Pharmacol. 2014;171(1):134-44. doi: 10.1111/bph.12428, PMID 24116971.

150. Trivedi PP, Jena GB, Tikoo KB, Kumar V. Melatonin modulated autophagy and Nrf2 signaling pathways in mice with colitis associated colon carcinogenesis. Mol Carcinog. 2016;55(3):255-67. doi: 10.1002/mc.22274, PMID 25598500.

151. Jumnongprakhon P, Govitrapong P, Tocharus C, Pinkaew D, Tocharus J. Melatonin protects methamphetamine induced neuroinflammation through NF-κB and Nrf2 pathways in glioma cell line. Neurochem Res. 2015;40(7):1448-56. doi: 10.1007/s11064-015-1613-2, PMID 25998888.

152. Shang B, Shi H, Wang X, Guo X, Wang N, Wang Y. Protective effect of melatonin on myenteric neuron damage in experimental colitis in rats. Fundam Clin Pharmacol. 2016;30(2):117-27. doi: 10.1111/fcp.12181, PMID 26787455.

153. Xia MZ, Liang YL, Wang H, Chen X, Huang YY, Zhang ZH. Melatonin modulates TLR4-mediated inflammatory genes through MyD88 and TRIF-dependent signaling pathways in lipopolysaccharide-stimulated RAW264.7 cells. J Pineal Res. 2012;53(4):325-34. doi: 10.1111/j.1600-079X.2012.01002.x, PMID 22537289.

154. Kang JW, Koh EJ, Lee SM. Melatonin protects liver against ischemia and reperfusion injury through inhibition of toll like receptor signaling pathway. J Pineal Res. 2011;50(4):403-11. doi: 10.1111/j.1600-079X.2011.00858.x, PMID 21355876.

155. Kang JW, Lee SM. Melatonin inhibits type 1 interferon signaling of toll-like receptor 4 via heme oxygenase-1 induction in hepatic ischemia/reperfusion. J Pineal Res. 2012;53(1):67-76. doi: 10.1111/j.1600-079X.2012.00972.x, PMID 22288937.

156. Lucas K, Maes M. Role of the toll-like receptor (TLR) radical cycle in chronic inflammation: possible treatments targeting the TLR4 pathway. Mol Neurobiol. 2013;48(1):190-204. doi: 10.1007/s12035-013-8425-7, PMID 23436141, PMCID PMC7091222.

157. Hu ZP, Fang XL, Fang N, Wang XB, Qian HY, Cao Z. Melatonin ameliorates vascular endothelial dysfunction, inflammation and atherosclerosis by suppressing the TLR4/NF-κB system in high-fat fed rabbits. J Pineal Res. 2013;55(4):388-98. doi: 10.1111/jpi.12085, PMID 24006943.

158. Wang Z, Wu L, You W, Ji C, Chen G. Melatonin alleviates secondary brain damage and neurobehavioral dysfunction after experimental subarachnoid hemorrhage: possible involvement of TLR4-mediated inflammatory pathway. J Pineal Res. 2013;55(4):399-408. doi: 10.1111/jpi.12087, PMID 24007200.

159. Chuffa LG, Fioruci Fontanelli BA, Mendes LO, Ferreira Seiva FR, Martinez M, Favaro WJ. Melatonin attenuates the TLR4-mediated inflammatory response through MyD88 and TRIF-dependent signaling pathways in an in vivo model of ovarian cancer. BMC Cancer. 2015;15(1):34. doi: 10.1186/s12885-015-1032-4, PMID 25655081, PMCID PMC4322437.

160. Li JG, Lin JJ, Wang ZL, Cai WK, Wang PN, Jia Q. Melatonin attenuates inflammation of acute pulpitis subjected to dental pulp injury. Am J Transl Res. 2015;7(1):66-78. PMID 25755829, PMCID PMC4346524.

161. Nduhirabandi F, Lamont K, Albertyn Z, Opie LH, Lecour S. Role of toll-like receptor 4 in melatonin-induced cardioprotection. J Pineal Res. 2016;60(1):39-47. doi: 10.1111/jpi.12286, PMID 26465095.

162. Shao G, Tian Y, Wang H, Liu F, Xie G. Protective effects of melatonin on lipopolysaccharide-induced mastitis in mice. Int Immunopharmacol. 2015;29(2):263-8. doi: 10.1016/j.intimp.2015.11.011, PMID 26590117.

163. Shi S, Zhang Y, Wen W, Zhao Y, Sun L. Molecular mechanisms of melatonin in the reversal of LPS-induced EMT in peritoneal mesothelial cells. Mol Med Rep. 2016;14(5):4342-8. doi: 10.3892/mmr.2016.5744, PMID 27634300.

164. Fu J, Xia X, Liu Z, Wang Y, Wang Y, Shi Q. The acute exposure of tetrachloro-p-benzoquinone (A. K. A. Chloranil) triggers inflammation and neurological dysfunction via toll-like receptor 4 signaling: the protective role of melatonin preconditioning. Toxicology. 2017 Apr 15;381:39-50. doi: 10.1016/j.tox.2017.02.015, PMID 28238930.

165. Hu Y, Wang Z, Pan S, Zhang H, Fang M, Jiang H. Melatonin protects against blood-brain barrier damage by inhibiting the TLR4/ NF-κB signaling pathway after LPS treatment in neonatal rats. Oncotarget. 2017;8(19):31638-54. doi: 10.18632/oncotarget.15780, PMID 28404943.

166. Yu GM, Kubota H, Okita M, Maeda T. The anti-inflammatory and antioxidant effects of melatonin on LPS-stimulated bovine mammary epithelial cells. PLOS One. 2017;12(5):e0178525. doi: 10.1371/journal.pone.0178525, PMID 28542575, PMCID PMC5444821.

167. Renn TY, Huang YK, Feng SW, Wang HW, Lee WF, Lin CT. Prophylactic supplement with melatonin successfully suppresses the pathogenesis of periodontitis through normalizing RANKL/OPG ratio and depressing the TLR 4/MyD88 signaling pathway. J Pineal Res. 2018;64(3). doi: 10.1111/jpi.12464.

168. Da Silveira Cruz Machado S, Pinato L, Tamura EK, Carvalho Sousa CE, Markus RP. Glia pinealocyte network: the paracrine modulation of melatonin synthesis by tumor necrosis factor (TNF). PLOS One. 2012;7(7):e40142. doi: 10.1371/journal.pone.0040142, PMID 22768337, PMCID PMC3388049.

169. Huang SH, Cao XJ, Wei W. Melatonin decreases TLR3-mediated inflammatory factor expression via inhibition of NF-κB activation in respiratory syncytial virus-infected RAW264.7 macrophages. J Pineal Res. 2008;45(1):93-100. doi: 10.1111/j.1600-079X.2008.00560.x, PMID 18312297.

170. Tan DX, Manchester LC, Terron MP, Flores LJ, Reiter RJ. One molecule many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species? J Pineal Res. 2007;42(1):28-42. doi: 10.1111/j.1600-079X.2006.00407.x, PMID 17198536.

171. Ma X, Idle JR, Krausz KW, Gonzalez FJ. Metabolism of melatonin by human cytochromes p450. Drug Metab Dispos. 2005;33(4):489-94. doi: 10.1124/dmd.104.002410, PMID 15616152.

172. Peyrot F, Martin MT, Migault J, Ducrocq C. Reactivity of peroxynitrite with melatonin as a function of pH and CO2 content. European Journal of Organic Chemistry. 2003;1:172-81. doi: 10.1002/1099-0690(200301)2003:1%3C172::AID-EJOC172%3E3.0.CO;2-W.

173. Blanchard B, Pompon D, Ducrocq C. Nitrosation of melatonin by nitric oxide and peroxynitrite. J Pineal Res. 2000;29(3):184-92. doi: 10.1034/j.1600-079x.2000.290308.x, PMID 11034116.

174. Peyrot F, Fernandez BO, Bryan NS, Feelisch M, Ducrocq C. N-nitroso products from the reaction of indoles with angelis salt. Chem Res Toxicol. 2006;19(1):58-67. doi: 10.1021/tx050253b, PMID 16411657.

175. Reppert SM, Godson C, Mahle CD, Weaver DR, Slaugenhaupt SA, Gusella JF. Molecular characterization of a second melatonin receptor expressed in human retina and brain: the Mel1b melatonin receptor. Proc Natl Acad Sci USA. 1995;92(19):8734-8. doi: 10.1073/pnas.92.19.8734, PMID 7568007, PMCID PMC41041.

176. Buendia I, Gomez Rangel V, Gonzalez Lafuente L, Parada E, Leon R, Gameiro I. Neuroprotective mechanism of the novel melatonin derivative Neu-P11 in brain ischemia-related models. Neuropharmacology. 2015;99:187-95. doi: 10.1016/j.neuropharm.2015.07.014, PMID 26188145.

177. Parada E, Buendia I, Leon R, Negredo P, Romero A, Cuadrado A. Neuroprotective effect of melatonin against ischemia is partially mediated by alpha-7 nicotinic receptor modulation and HO-1 overexpression. J Pineal Res. 2014;56(2):204-12. doi: 10.1111/jpi.12113, PMID 24350834.

178. Neal Moffitt O, Delic G, Bradshaw V, Olcese PC. Prophylactic melatonin significantly reduces Alzheimer’s neuropathology and associated cognitive deficits independent of antioxidant pathways in AβPPswe/PS1 mice. Mol Neurodegener. 2015 Jul 11;10:27. doi: https://doi.org/10.1186/s13024-015-0027-6.

179. Ramos E, Patino P, Reiter RJ, Gil Martin E, Marco Contelles J, Parada E. Ischemic brain injury: new insights on the protective role of melatonin. Free Radic Biol Med. 2017 Mar;104:32-53. doi: 10.1016/j.freeradbiomed.2017.01.005, PMID 28065781.

180. Ding K, Wang H, Xu J, Li T, Zhang L, Ding Y. Melatonin stimulates antioxidant enzymes and reduces oxidative stress in experimental traumatic brain injury: the Nrf2-ARE signaling pathway as a potential mechanism. Free Radic Biol Med. 2014 Aug;73:1-11. doi: 10.1016/j.freeradbiomed.2014.04.031, PMID 24810171.

181. Chumboatong W, Thummayot S, Govitrapong P, Tocharus C, Jittiwat J, Tocharus J. Neuroprotection of agomelatine against cerebral ischemia/reperfusion injury through an antiapoptotic pathway in rat. Neurochem Int. 2017;102:114-22. doi: 10.1016/j.neuint.2016.12.011, PMID 28012846.

182. Tajes M, Gutierrez Cuesta J, Ortuno Sahagun D, Camins A, Pallas M. Anti-aging properties of melatonin in an in vitro murine senescence model: involvement of the sirtuin 1 pathway. J Pineal Res. 2009;47(3):228-37. doi: 10.1111/j.1600-079X.2009.00706.x, PMID 19650880.

183. Zhao L, Liu H, Yue L, Zhang J, Li X, Wang B. Melatonin attenuates early brain injury via the melatonin receptor/Sirt1/NF-κB signaling pathway following subarachnoid hemorrhage in mice. Mol Neurobiol. 2017;54(3):1612-21. doi: 10.1007/s12035-016-9776-7, PMID 26867656.

184. Han B, Li S, Lv Y, Yang D, Li J, Yang Q. Dietary melatonin attenuates chromium induced lung injury via activating the Sirt1/Pgc-1α/Nrf2 pathway. Food Funct. 2019;10(9):5555-65. doi: 10.1039/c9fo01152h, PMID 31429458.

185. Choi HI, Kim HJ, Park JS, Kim IJ, Bae EH, Ma SK. PGC-1α attenuates hydrogen peroxide induced apoptotic cell death by upregulating Nrf-2 via GSK3β inactivation mediated by activated p38 in HK-2 Cells. Sci Rep. 2017;7(1):4319. doi: 10.1038/s41598-017-04593-w, PMID 28659586, PMCID PMC5489530.

186. Scarpulla RC. Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol Rev. 2008;88(2):611-38. doi: 10.1152/physrev.00025.2007, PMID 18391175.

187. Yang D, LV Z, Zhang H, Liu B, Jiang H, Tan X. Activation of the Nrf2 signaling pathway involving KLF9 plays a critical role in allicin resisting against arsenic trioxide induced hepatotoxicity in rats. Biol Trace Elem Res. 2017;176(1):192-200. doi: 10.1007/s12011-016-0821-1, PMID 27561292.

188. Frey RS, Ushio Fukai M, Malik AB. NADPH oxidase dependent signaling in endothelial cells: role in physiology and pathophysiology. Antioxid Redox Signal. 2009;11(4):791-810. doi: 10.1089/ars.2008.2220, PMID 18783313, PMCID PMC2790033.

189. Pinheiro LC, Tanus Santos JE, Castro MM. The potential of stimulating nitric oxide formation in the treatment of hypertension. Expert Opin Ther Targets. 2017;21(5):543-56. doi: 10.1080/14728222.2017.1310840, PMID 28338370.

190. Faridzadeh A, Tabashiri A, Miri HH, Mahmoudi M. The role of melatonin as an adjuvant in the treatment of COVID-19: a systematic review. Heliyon. 2022;8(10):e10906. doi: 10.1016/j.heliyon.2022.e10906, PMID 36254292, PMCID PMC9540685.

191. Borges L, Gennari Felipe M, Dias BB, Hatanaka E. Melatonin zinc and vitamin C: potential adjuvant treatment for COVID-19 patients. Front Nutr. 2021;8:821824. doi: 10.3389/fnut.2021.821824, PMID 35155533, PMCID PMC8826215.

192. Zinchuk VV, Lepeev VO, Hulyia IE. Participation of gaseous transmitters in blood oxygen transport function modification under the influence of magnetic field. Ross Fiziol Zh Im I M Sechenova. 2016;102(10):1176-84. PMID 30193435.

193. Zinchuk VV, Poluyan IA, Hlutkin SV. Effects of melatonin on the oxygen transport in blood gas transmitters and prooxidant antioxidant balance in the exercise. Hum Physiol. 2019;45(6):693-700. doi: 10.1134/S0362119719050219.

194. Mousavi SA, Heydari K, Mehravaran H, Saeedi M, Alizadeh Navaei R, Hedayatizadeh Omran A. Melatonin effects on sleep quality and outcomes of COVID-19 patients: an open label randomized controlled trial. J Med Virol. 2022;94(1):263-71. doi: 10.1002/jmv.27312, PMID 34460132, PMCID PMC8662261.

195. Simko F, Bednarova KR, Krajcirovicova K, Hrenak J, Celec P, Kamodyova N. Melatonin reduces cardiac remodeling and improves survival in rats with isoproterenol-induced heart failure. J Pineal Res. 2014;57(2):177-84. doi: 10.1111/jpi.12154, PMID 24942291.

Published

01-08-2025

How to Cite

GHOSH, ABHIJIT, et al. “MELATONIN: A FORGOTTEN MOLECULE TO PROTECT AGAINST SARS-COV-2 MEDIATED CARDIO-RESPIRATORY DISORDER”. International Journal of Pharmacy and Pharmaceutical Sciences, vol. 17, no. 8, Aug. 2025, pp. 8-24, doi:10.22159/ijpps.2025v17i8.54583.

Issue

Section

Review Article(s)

Most read articles by the same author(s)

Similar Articles

<< < 96 97 98 99 100 > >> 

You may also start an advanced similarity search for this article.